dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A case study of nitrification and nitrite isotope fractionation in a eutrophic temperate river system
VerfasserIn Juliane Jacob, Kirstin Dähnke, Tina Sanders
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250089172
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-3365.pdf
 
Zusammenfassung
Stable isotopes of nitrate are often used to assess processing of nitrate in the water column of oceans, estuaries, and rivers. In all these environments, nitrate regeneration via nitrification is an important source of new nitrate. The bulk isotope effect of nitrification is hard to predict: It is a two-step-process by distinct groups of microorganisms oxidizing ammonium to nitrate via nitrite. Both processes have divergent isotope effects, and it is even more difficult to unravel these effects in natural environments, because nitrite usually does not accumulate and isotope analysis is not possible. During our routine sampling scheme at the River Elbe an exceptional flood occurred in June 2013, and nitrite and ammonium accumulated, allowing us to investigate isotope fractionation of nitrification in a natural river system. We measured nutrient concentrations, dual nitrate isotopes, δ15N-NO2, and, where possible, δ15N-NH4. Nitrate leached from catchment area, and δ15N-NO3 and δ18O-NO3 decreased from typical spring bloom values (9.0 oand 3.5 o respectively) to winter nitrate background values (7.4 oand 2.1 o respectively). This indicates that riverine assimilation was minimal during the flood. Ammonium and nitrite concentrations increased to 12.5 μM and 5.7 μM, respectively, which likely was due to remineralization and nitrification in the water column. Ammonium δ15N-NH4 values increased up to 12 oand nitrite δ15N-NO2 values ranged from -4.8 oand -14.2 oṄitrite oxidation and decreasing concentrations were coupled with a fractionation factor 15ɛ of -8.6 o following normal, and not inverse, isotope fractionation. This deviates from findings in pure cultures of nitrite-oxidizing bacteria. We assume that the mechanisms responsible for inverse fractionation apply in natural environment as well, but that the resulting trend in δ15N-NO2 is masked by dilution with fresh nitrite stemming from ammonium oxidation. Our data are a first approximation of the natural bulk isotope effect of nitrite oxidation in natural environments and highlight that pure culture results cannot easily be extrapolated to natural microbial assemblages or water bodies.