dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Possible Triggering of the Largest Deccan Eruptions by the Chicxulub Impact
VerfasserIn Mark Richards, Walter Alvarez Link zu Wikipedia, Stephen Self, Leif Karlstrom, Paul Renne, Michael Manga, Courtney Sprain
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250088865
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-3042.pdf
 
Zusammenfassung
New constraints on the timing of the Cretaceous-Paleogene (K-Pg) mass extinction, the Chicxulub impact, and a particularly voluminous and apparently brief pulse within the “main-stage” eruptions of the Deccan Traps continental flood basalt province suggest that these three events may have occurred within less than several hundred thousand years of each other. Partial melting induced by the Chicxulub event does not provide an energetically-plausible explanation for this coincidence, and both geochronological and magnetic-polarity data show that Deccan volcanism was underway well before Chicxulub/K-Pg time. However, historical evidence for the triggering of distant volcanic and hydrologic events due to earthquakes suggests that surface waves excited by the Chicxulub impact might plausibly have caused a transient increase in the effective permeability of the deep magmatic system beneath the Deccan province (“plume head”), depending upon the efficiency of coupling between the impact energy and seismic waves. Recently published seismic modeling [Meschede et al., 2011] suggests that the Chicxulub impact may have generated seismic energy densities of order 0.1–1.0 J/m3 globally throughout the upper ~200 km of the Earth’s mantle, just sufficient to trigger volcanic eruptions worldwide. It therefore seems reasonable to ask whether the Chicxulub impact might have triggered the enormous Poladpur, Ambenali, and Mahabaleshwar (Wai Subgroup) lava flows that account for >50% of the entire Deccan Traps volume. High-precision radioisotopic dating of the main-phase Deccan flood basalt formations should be able to either confirm or reject this hypothesis. In the former case, this singular outburst within the Deccan Traps (and possibly volcanic eruptions worldwide) may have contributed significantly to the K-Pg extinction. In the latter case, a major role for the Deccan Traps in the K-Pg extinction would seem unlikely.