dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Local Short Period Seismic Network at Villarrica Volcano
VerfasserIn Cindy Mora-Stock, Martin Thorwart, Laura Dzieran, Wolfgang Rabbel
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250088651
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-2788.pdf
 
Zusammenfassung
Since its last eruption in 1984-85, the Villarrica volcano has been presenting both seismic and fumarolic activity, accompanied by an open vent and a refulgent lava lake. To study its activity, a local seismic network of 75 DSS-Cubes short-period stations was deployed at and around the volcano. During the first two weeks of March, 2012, 30 3-Component and 45 1-Component stations were installed in a 63 km x 55 km area, with spacing between stations of 1.5 km for stations inside the perimeter of the volcanic edifice, and 5 km outside this perimeter. In total, approximately 94 volcano tectonic (VT) events with clear P- and S- wave arrivals were located to the SSW, SSE and North of the Crater at an average depth of 3 km below sea level. At least 73 events classified as “hybrids” (HB) were observed, predominantly about 2 km above sea level near or at the conduit. They present emergent higher frequencies at the beginning of the signal, and sharp S-wave at the crater stations, but a strong scattering, lower frequency content, and elongated coda on the stations along the volcanic edifice, probably due to ash layers and heterogeneities at the edifice. A few long period events (LP) with frequencies between 2-4 Hz were observed during the two weeks. Three set of groups can be distinguished for the regional tectonic events: aftershocks on the southern end of the rupture of the Maule 2010 event, with S-P wave travel time difference of ca. 30 s or more; a second group with S-P travel time difference between 10 s and 20s; and the much closer group with S-P wave difference of 10 s or less. To determine the average velocity structure of the volcano, a cross-correlation analysis of the waves from a M6.1 event in Argentina and other regional events was performed. The model used was a cylindric model of 6.5 km radius inside the volcanic edifice, which gave a P-wave velocity of 3.6 km/s, and a region outside this radius with a velocity of 4.1 km. The network was divided into five zones (around the volcano and the top part) to apply the Near Surface Velocity approach, which gave velocities between 2.1 – 5.8 km/s, being the top the fastest part.