dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Effects of long-term elevated CO2, warming, and prolonged drought on Pleurozium-associated diazotrophic activity and abundance
VerfasserIn Kristine Dyrnum, Anders Priemé, Anders Michelsen
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250088549
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-2664.pdf
 
Zusammenfassung
Nitrogen (N2) fixation is the primary natural influx of N to terrestrial ecosystems, and changes in N2 fixation may have consequences for primary productivity and thus ecosystem function. We studied the activity and abundance of diazotrophs associated with the feather moss Pleurozium schreberi in a temperate heathland, after seven years of global change manipulations, including elevated atmospheric CO2 (510 ppm), increased temperature (0.5-1.5 °C), and prolonged pre-summer droughts (4-6 weeks /year). Acetylene reduction assay was carried out monthly to monitor N2 fixation rates throughout one year, while nif H copy abundance, serving as a diazotroph abundance estimate, was measured by quantitative polymerase chain reaction (q-PCR). Prolonged summer droughts significantly increased both N2 fixation and nif H copy abundance, contrasting previous studies that demonstrate a direct negative correlation between N2 fixation and water availability. A shift in the relative abundance of N2-fixing bacteria from the green, upper parts of the moss stem to the lower, brown parts was observed. This shift could make diazotrophs less sensitive to desiccation, enabling N2 fixation to be upheld for longer during drought and thus causing higher abundance. Increased temperature likewise had a positive effect on the diazotroph abundance, although this did not translate into increased activity. Possibly, warming protects diazotrophs during extreme cold events, while actual N2 fixation is limited by water, disregarding a rise in potential N2 fixation caused by higher abundance. Increased CO2 caused no significant diazotroph response. Our study showed that long-term increase in temperature and recurrent drought events cause higher diazotroph abundance in Pleurozium schreberi and thus enhance the potential N2 fixations rate. Furthermore, our results indicate that diazotrophs may alter colonization patterns and thereby actively remain in the moss fraction less likely affected by desiccation. In consequence, Pleurozium-associated N2 fixation may become an even more important contributor of N for terrestrial ecosystems in a predicted future climate.