dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Aquatic carbon and GHG losses via the aquatic pathway in an arctic catchment
VerfasserIn Kerry Dinsmore, Mike Billett, Jason Lessels, Lorna Street, Philip Wookey, Robert Baxter, Jens-Arne Subke, Doerthe Tetzlaff
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250086620
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-523.pdf
 
Zusammenfassung
Based in Northwest Canada, the HYDRA project (“Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets”) aims to understand the fundamental role that hydrological processes play in regulating landscape-scale carbon fluxes. The project aims to determine a) the role of vegetation functional type in carbon uptake, turnover and allocation, b) how the same functional types influence the delivery of soil-derived carbon to surface waters, and c) how important the aquatic carbon and greenhouse gas (GHG) losses are relative to catchment scale terrestrial fluxes. Here we focus on the magnitude of the aquatic concentrations and fluxes, presenting results from the first year of field sampling. Concentrations of the greenhouse gases CO2, CH4 and N2O, as well as dissolved organic and inorganic carbon (DOC and DIC), will be presented from a range of freshwater types within the tundra landscape; sites include lakes, polygons and the ‘Siksik’ stream which drains the primary study catchment. Eight sampling locations were selected along the approximately 2km long Siksik stream to allow carbon and GHG concentrations to be considered within a set of nested subcatchments. This synoptic sampling regime, in combination with stable isotopes and major ion concentrations also measured at each sampling point, will allow inputs of carbon and GHGs to be traced to source areas within the catchment. Evasion and downstream export will also be calculated and preliminary results presented in the context of quantifying the relative importance of the aquatic pathway to the full catchment carbon and greenhouse gas budgets. This analysis will also allow an initial comparison between the relative importance of different water bodies within the catchment, highlighting spatial hotspots to be prioritized in future campaigns.