dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Laboratory-scale interaction between CO2-rich brine and limestone and sandstone under supercritical CO2 conditions
VerfasserIn Maria Garcia-Rios, Jordi Cama, Linda Luquot, Josep Soler
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250086460
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-329.pdf
 
Zusammenfassung
A test site for a prospective CO2 geological storage is situated in Hontomín (Burgos, northern Spain) with a reservoir rock that is composed of limestone (calcite) and sandstone (66 wt.% calcite, 28 wt.% quartz and 6 wt.% microcline). During and after CO2 injection, the resulting CO2-rich acid brine will likely promote the dissolution of carbonate minerals (calcite) and aluminosilicates (microcline). Since the reservoir Hontomín brine contains sulfate, gypsum (or anhydrite at depth) may precipitate. These coupled dissolution and precipitation reactions may induce changes in porosity and pore structure of the repository rocks. Percolations experiments with mechanically fractured cores (8.6 mm in diameter and 18 mm length) were performed under CO2 supercritical conditions (Pfluid = 150 bar; pCO2 ≈ 90 bar and T = 60 ºC) in order to evaluate and quantify variations in fracture permeability, preferential path formation and fracture volume. The brine sulfate content and the flow rate were varied. Regarding limestone, as the synthetic brines circulated through the fracture, the fracture permeability initially increased slowly, to thereafter increase rapidly. This change was due to a localized dissolution process (wormhole formation) along the core that occurred regardless gypsum precipitation. Nonetheless, the originated fracture volume in the sulfate-rich brine experiments was a factor of two smaller than that in sulfate-free brine experiments. Also, an increase in flow rate from 0.2 to 60 mL/h increased the volume of both dissolved calcite and precipitated gypsum. Regarding sandstone, permeability increased gradually with time. Nonetheless, this increase was not always continuous due to eventual fracture clogging. Formation of wormholes was observed. Acknowledgements This study was financed by CIUDEN (Ciudad de la Energía), the Compostilla OXYCFB300 project and the PANACEA project (European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement number 282900).