dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Analysis of Ice-Related Intra-Crater Facies in Promethei Terra, Mars
VerfasserIn Csilla Orgel, Akos Kereszturi, Stephan van Gasselt
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250086266
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-1042.pdf
 
Zusammenfassung
On Mars ice-related landforms have been identified at mid-latitudes between 30° and 50° in both hemispheres including the areas of Tempe Terra, Deuteronilus-Protonilus Mensae, Phlegra Montes and the rims of the southern-hemispheric impact basins Argyre and Hellas [1-7]. Our study area – informally termed hourglass-shaped crater [8] – is located near Reull Vallis on the eastern rim of the Hellas impact basin (39.0°S, 102.8°E). Impact-crater infill was described as debris-covered piedmont-type glacier [8] based on analysis of High Resolution Stereo Camera (HRSC) data, and implies a glacial origin with precipitation of ice during higher obliquity phases. Recent, higher-resolution image data such as data of the High Resolution Imaging Science Experiment (HiRISE) and the Context Imager (CTX) provide a more detailed picture of the lateral distribution of different small-scale surface features indicative of periglacial and/or glacial origin. The aim of this study is to identify qualitative and quantitative characteristics of these ice-related landforms and to separate sources of water ice and related processes. Initial age determinations based on impact-crater size-frequency statistics indicate an age of 3.4 Gyr for the impact-crater and an age of approximately 75 Myr for the infill [8]. In order to identify a possible sequence of surface-feature evolution we calculated the age distribution of four major surface units which span ages ages between 1-47 Myr. Along with detailed age information and a separation of different processes at this confined type location of Mars young-Amazonian landscape evolution and potential cyclic signals are being reconstructed to constrain climate evolution. Carr, M. H. & Schaber, G. G. 1977: Martian permafrost features.– J. Geophys. Res. 82, 4039-4054. Squyres, S. W. 1978: Martian fretted terrain: flow of erosional debris.– Icarus 34, 600-613. Squyres, S. W. 1979: The distribution of lobate debris aprons and similar flows on Mars.– J. Geophys. Res. 84, 8087-8096. Lucchitta, B. K. 1981: Mars and Earth: comparison of cold-climate features.– Icarus 45, 264-303. Lucchitta, B. K. 1984: Ice and debris in the fretted terrain, Mars.– J. Geophys. Res. 89, B409-B418. Squyres, S. W. & Carr, M. H. 1986: Geomorphic evidence for the distribution of ground ice on Mars.– Science 231, 249-252. Kargel, J. S. & Strom, R. G. 1992: Ancient glaciation on Mars.– Geology 20, 3-7. Head, J. W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M., Werner, S., Milkovich, S., van Gasselt, S. & the HRSC Co-Investigator Team 2005: Tropical and mid-latitude snow and ice accumulation, flow and glaciation on Mars.– Nature 434, 346-351.