dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Soil organic degradation: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR)
VerfasserIn Remy Albrecht, David Sebag, Eric Verrecchia
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250084442
 
Zusammenfassung
Being a source of mineral nutrients, organic matter contributes to soil chemical fertility and acts on soil physical fertility through its role in soil structure. Soil organic matter (SOM) is a key component of soils. Despite the paramount importance of SOM, information on its chemistry and behaviour in soils is incomplete. Numerous methods are used to characterize and monitor OM dynamics in soils using different approaches (Kogel-Knabner, 2000). Two of the main approaches are evaluated and compared in this study. Rock-Eval pyrolysis (RE pyrolysis) provides a description of a SOM’s general evolution using its thermal resistance. The second tool (13C CPMAS NMR) aims to give precise and accurate chemical information on OM characterization. The RE pyrolysis technique was designed for petroleum exploration (Lafargue et al., 1998) and because of its simplicity, it has been applied to a variety of other materials such as soils or Recent sediments (Disnar et al., 2000; Sebag, 2006). Recently, RE pyrolysis became a conventional tool to study OM dynamics in soils. In RE pyrolysis, a peak deconvolution is applied to the pyrolysis signal in order to get four main components related to major classes of organic constituents. These components differ in origin and resistance to pyrolysis: labile biological constituents (F1), resistant biological constituents (F2), immature non-biotic constituents (F3) and a mature refractory fraction (F4) (Sebag, 2006; Coppard, 2006). Main advantages of the technique are its repeatability, and rapidity to provide an overview of OM properties and stocks. However, do the four major classes used in the literature reflect a pertinent chemical counterpart? To answer this question, we used 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) to collect direct information on structural and conformational characteristics of OM. NMR resonances were assigned to chemical structures according to five dominant forms: alkyl C, O-alkyl C, aromatic C and phenolic C and carbonyl–carboxyl C. Moreover, in order to avoid the influence of pedogenesis, we decided to use “less complex OM”, i.e. compost samples. The choice to use compost samples has been dictated by the fact that i) composting processes are well described and referenced in the literature, and ii) these samples have already been studied previously (Albrecht, 2009). Significantly high correlations are observed between classes, or indices, from RE pyrolysis and main classes of organic matter detected by NMR e.g. F1 and labile / easily degradable components (alkyl C et O-alkyl C); F3/F4 and humified OM (aromatic C and phenolic C); R index (contributions of bio-macromolecules) and phenolic and aromatic C; I index (related to immature OM) and labile / easily degradable components (alkyl C et O-alkyl C). This work confirms the interest of RE pyrolysis in soil science (notably by using the R/I index ratio). Compost was an ideal model with a clear chronological evolution of organic matter. The next step consists of using more complex samples such as bulk soil samples. REFERENCES Albrecht, R., Joffre, R., Le Petit, J., Terrom, G., Périssol, C. 2009. Calibration of Chemical and Biological Changes in Cocomposting of Biowastes Using Near-Infrared Spectroscopy. Environmental Science & Technology, 43(3), 804-811. Copard, Y., Di-Govanni, C., Martaud, T., Alberic, P., Olivier, J.E. 2006. Using Rock-Eval 6 pyrolysis for tracking fossil organic carbon in modern environments: implications for the roles of erosion and weathering. Earth Surface Processes and Landforms, 31(2), 135-153. Disnar, J.R., Guillet, B., Keravis, D., Di-Giovanni, C., Sebag, D. 2003. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Organic Geochemistry, 34(3), 327-343. Kogel-Knabner, I. 2000. Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31(7-8), 609-625. Lafargue, E., Marquis, F., Pillot, D. 1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue De L Institut Francais Du Petrole, 53(4), 421-437. Sebag, D., Disnar, J.R., Guillet, B., Di Giovanni, C., Verrecchia, E.P., Durand, A. 2006. Monitoring organic matter dynamics in soil profiles by 'Rock-Eval pyrolysis': bulk characterization and quantification of degradation. European Journal of Soil Science, 57(3), 344-355.