dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Continuous measurements of nitrous oxide, carbon monoxide, methane and carbon dioxide in the surface ocean with novel laser-absorption analysers
VerfasserIn Jan Kaiser, Imke Grefe, Natalie Wager, Dorothee C. E. Bakker, Gareth A. Lee
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250084236
 
Zusammenfassung
In recent years, improvements in spectroscopic technology have revolutionised atmospheric trace gas research. In particular, cavity-based optical absorption analysers allow determination of gas concentrations with high frequency, repeatability, reproducibility and long-term stability. These qualities make them particularly suitable for autonomous measurements on voluntary observing ships (VOS). Here, we present results from three of the first deployments of such analysers on research ships, as a first step towards VOS installations. Los Gatos off-axis ICOS (Integrated Cavity Output Spectroscopy) analysers were used to measure nitrous oxide (N2O), carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) mixing ratios in ocean surface water during research cruises in 2010, 2011 and 2012. The analysers were coupled to an equilibrator fed by the scientific seawater supply in the ship’s laboratories. The equilibrator measurements were alternated with regular measurements of marine air and calibrated standard gases. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol-1. The same value was achieved for duplicate measurements of a standard gas analysed within 1 hour of each other. The response time to concentration changes in water was 142-203 s, depending on the headspace flow rate. During the first deployment on the AMT20 cruise (Atlantic Meridional Transect, Southampton to Punta Arenas, 12 October to 25 November 2010), we unexpectedly found the subtropical gyres to be slightly undersaturated in N2O, implying that this region acted as a sink for this greenhouse gas. In contrast, the equatorial region was supersaturated and a source of nitrous oxide to the atmosphere. Mean sea-to-air fluxes were overall small and ranged between -1.6 and 0.11 μmol m-2 d-1 (negative fluxes imply an net uptake by the ocean). Despite the good short-term repeatability, significant calibration drift occurred between the six-hourly calibration intervals. We have therefore repeated the observations during the AMT22 cruise (Southampton to Punta Arenas, 10 October to 24 November 2012) and will present the results together with the 2010 data. The second deployment during the D366 Round Britain ocean acidification cruise (6 June to 9 July 2011) showed virtually no day-to-day drift, based on the calibration gases and marine air analyses. Preliminary analyses of the data show that CH4 and N2O were supersaturated in the Skagerrak region, presumably due to the influence of Baltic Sea water, and in coastal areas. Phytoplankton blooms show evidence of CO2 draw-down. CO is extremely supersaturated (up to 50 times), which can be attributed to photochemical breakdown of dissolved organic carbon compounds. For the more recent deployments, a CO2/CH4 and an N2O/CO analyser were successfully operated in series, off of a single equilibrator feed. No leaks or other problems occurred during these deployments, which shows that such a configuration would be ideal for VOS installations as part of the ICOS observational network.