dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel First dating of groundwater with Atom Trap Trace Analysis of 39Ar - technique
VerfasserIn Florian Ritterbusch, Sven Ebser, Joachim Welte, Thomas Reichel, Arne Kersting, Roland Purtschert, Werner Aeschbach-Hertig, Markus K. Oberthaler
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250082958
 
Zusammenfassung
The importance of 39Ar as a dating tracer for the time range between 50 and 1000 years has clearly been identified [1]. So far, it has been routinely accessible only by Low-Level-Counting (LLC) in the underground laboratory in Bern requiring a sample size of several tons of water and a measuring time of several weeks [2]. Here we report on the first dating results with 39Ar using an atom optical technique known as Atom Trap Trace Analysis (ATTA). This method has been developed for rare krypton isotopes in the past decade and is now available for routine analysis [3]. However, the applicability of ATTA to 39Ar has only been demonstrated in a proof of principle experiment [4]. We will discuss the essential experimental improvements that were necessary for bringing this method to the level of dating real samples. Our apparatus achieves an atmospheric 39Ar-count-rate of 4.1(3) atoms/h, which corresponds to an 18-fold improvement over the reported results in [4]. Based on that, we dated a groundwater sample of the upper Rhine Graben to 360(68) years within one day of measurement. Further samples of the investigated aquifer system are dated similarly in order to obtain the age information for a comprehensive hydrological study. The apparatus has the potential to measure 39Ar-concentrations on small samples down to less than 1 ccSTP of Argon, corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice. This opens up the way for a broader application of 39Ar as a tracer e.g. in oceanography or glaciology, where the sample sizes are typically limited to 10 l of water or 1 kg of ice respectively. [1] Loosli, H. H. (1983), A dating method with 39Ar, Earth and Planetary Science Letters, 63, 51-62. [2] P. Collon, W. Kutschera, and Z.-T. Lu. Tracing noble gas radionuclides in the environment. Annual Review of Nuclear and Particle Science, 54(1): 39-67, 2004. [3] W. Jiang et al., An atom counter for measuring 81Kr and 85Kr in environmental samples. Geochimica et Cosmochimica Acta, 91(0):1-6, 2012. [4] Jiang, W. et al. (2011), 39Ar detection at the 10-16 isotopic abundance level with Atom Trap Trace Analysis, Phys. Rev. Lett. 106, DOI: 10.1103/PhysRevLett.106.103001.