dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The impact of natural and anthropogenic aerosols on radiation and clouds simulated with the fully online coupled model system COSMO-ART
VerfasserIn Bernhard Vogel, Eleni Athanasopoulou, Max Bangert, Andrew Ferrone, Inga Gölz, Heike Vogel, Corinna Hoose, Matthias Hummel, Dominik Brunner
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250081721
 
Zusammenfassung
The interplay between air quality and regional climate has become a focal point in recent atmospheric research. The treatment of the interaction of the involved processes requires a new class of air quality models. The model system COSMO-ART (Vogel et al., 2009, Bangert et al., 2012) is a comprehensive online coupled model system to simulate the spatial and temporal distributions of reactive gaseous and particulate matter. It is used to quantify the feedback processes between aerosols and the state of the atmosphere on the continental to the regional scale with two-way interactions between different atmospheric processes. To simulate the impact of the various aerosol particles on the cloud microphysics and precipitation COSMO-ART was coupled with the two-moment cloud microphysics scheme of Seifert and Beheng (2006) by using parameterisations for aerosol activation and ice nucleation. The model system was applied for different model domains and meteorological situations to quantify the direct and the indirect impact of the natural and anthropogenic aerosol particles. The simulation of the 2007 wild fire events in Greece reveals that the high aerosol concentrations cause a decrease of the short wave radiation at the surface and consequently a change of temperature throughout the whole atmosphere. Temperature changes with different sign over land and surface occur. Results of the simulations of the heat wave of 2003 show the influence of soot particles in different mixing state on radiation. The soot content of the atmosphere modifies the thermal stability and therefore the mixing capabilities of the atmosphere. Laboratory experiments have identified primary biological aerosol particles as efficient ice nuclei at relatively high temperatures. However, simulations with COSMO-ART show that the contribution of pollen grains to cloud ice formation is low due to low number concentrations at cloud altitude.