dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The influence of water and supercritical CO2 on the frictional strength and velocity dependence of montmorillonite and muscovite and the potential for fault zone reactivation in CO2 storage reservoirs
VerfasserIn Jon Samuelson
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250081022
 
Zusammenfassung
Recent research indicates that CO2 is capable of inducing swelling in clay minerals in a similar fashion to water, though to a more modest extent. It is therefore of importance for feasibility studies of the geological storage of CO2 to understand if the addition of CO2 to clay rich fault zones has the potential to cause significant frictional weakening, similar to that associated with water. We conduct velocity-stepping direct shear experiments on pre-pressed plates (49 mm long x 35 mm wide x ~1 mm thick), of montmorillonite and muscovite. An effective normal stress of 35 MPa is used in all experiments, which is roughly equivalent to the effective overburden stress expected in many storage projects. Temperature was held constant at ~48 °C, consistent with previous experiments which indicated CO2 induced swelling in montmorillonite. Pore fluid conditions are the main variable in this suite of experiments, in which the frictional strength of each clay mineral is analyzed oven-dry (attached to vacuum), saturated with deionized (DI) water, and oven-dry saturated with supercritical CO2. Pore pressure is maintained at 15 MPa for the water and CO2 saturated experiments (Ïăn=50 MPa, PH20-ˆ•CO2=15 MPa). Shearing velocity is varied systematically from approximately 11 μm/s to 0.2, 1.1, 11, 1.1, and 0.2 μm/s in order to determine the rate and state friction parameters, a, b, and DC. Additionally, microstructural analysis of the post-shear clay gouges is conducted in an effort to understand the rheology behind changes observed in frictional properties. Preliminary results of experiments on montmorillonite show an overconsolidation peak at strains of approximately 0.3 for each of the oven-dry and water and CO2 saturated experiments. Peak friction (μP) for oven-dry montmorillonite is 0.53, decaying to a steady state friction (μSS) of 0.51. For DI-saturated montmorillonite μP=0.11 and μSS=0.10. CO2-saturated montmorillonite displays frictional strength between that of dry and DI-saturated montmorillonite with a peak friction of 0.44, and steady state friction of 0.34. These early results suggest that saturation with supercritical CO2 may induce frictional weakening of fault zones rich in swelling clays, however such weakening is not as significant as that associated with water saturation.