dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Lagrangian modelling of OPALE dataset.
VerfasserIn Jaime E. Gil, Jennie Thomas, Slimane Bekki, Alexandre Kukui, Gerad Ancellet, Susanne Preunkert, Michel Legrand, Markus Frey, Joel Savarino, Bruno Jourdain, Michel Kerbrat, James France, Martin King, Ralf Toumi
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250080342
 
Zusammenfassung
The OPALE measurement campaign aimed to characterize the atmospheric chemistry of the East Antarctic Plateau making a range of measurements at two sites, a coastal one, Dumont d’Urville (DDU) (From December 2010 until March 2011, 66o S, 123oE, coastal site) and on top of the Antarctic plateau Dome C  (From December 2011 until January 2012 at Dome C, 75oS, 123o E, 3233 m a.s.l.). There are relatively few observations of chemistry occurring inland and coastal sites Antarctic sites. During the campaign air masses originating from the marine boundary layer, the free troposphere, the Antarctic continent, and of mixed origins were observed. We present analyses of chemical measurements (including O3, NO2, OH, RO2, hydrocarbons) using the CiTTyCAT photochemical trajectory model. The model simulates the chemistry of air masses over multiple (~5) days back trajectories provided by a stochastic trajectory model (FLEXPART). In some cases, the initial chemical conditions are taken from a chemistry-transport model (MOZART). The effect of clouds on the photolysis rates is also accounted for using MODIS satellite data. The model results are compared with measurements performed during both OPALE campaign years. Differences between the reactive nitrogen and hydroxyl radical chemistry at DDU and Dome C and the strong influence of reactive exchanges of trace gases between the snow and the atmosphere at Dome C are highlighted. The implications for the oxidizing capacity of the Antarctic boundary layer are also discussed.