dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The Fischa-Dagnitz spring, Southern Vienna Basin: a multi tracer time series study re-assessing earlier conceptual assumptions.
VerfasserIn Axel Suckow, Christoph Gerber, Martin Kralik, Jürgen Sültenfuß, Roland Purtschert
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250077818
 
Zusammenfassung
The gravel aquifer of the Southern Vienna Basin is a very important backup drinking water resource for the city of Vienna. A discharge location, the Fischa-Dagnitz spring in the Southern Vienna Basin, Austria, was re-investigated in 2011, five years after the gas exchange tracer test published in (Stolp et al., 2010), and sampled for stable isotopes 18O/2H, tritium, 3He, SF6 and 85Kr (Gerber et al., 2012). Additionally, new tritium time series data (Davis et al., 1967), previously not considered in Stolp et al. (2010), were included. These show a higher and earlier tritium peak of >300 TU in 1965 in the discharge of the Fischa-Dagnitz spring as compared to 221 TU in 1972 considered in Stolp et al. (2010). The new 3He, SF6 and 85Kr gas tracer data from 2011 confirm the earlier finding for 3He of Stolp et al. (2010) and indicate a more recent equilibration with the atmosphere than the water bound tracers 18O, 2H and tritium. A new modelling attempt using the Lumpy code (Suckow, 2012) confirmed the discrepancy between the tritium data and the gaseous tracers 3He, SF6 and 85Kr. No steady-state combination of local recharge (represented by an exponential model) and Schwarza river infiltration flowing through the gravel aquifer (represented by a parallel dispersion model) can equally well explain both the tritium time series and the gas tracer results. A revised conceptual model proposes that a pinching of the aquifer at unconformities in the gravel body or a fault zone known in the gravel body forces groundwater along the flow path closer to the surface and exposes it to the atmosphere. This would tend to reset the “dating” clock for the gaseous tracers 3He, SF6 and 85Kr, which can equilibrate quickly with the atmosphere, but not for tritium, which marks the transport behaviour of the water itself. These findings are of importance also for other multi-tracer assessments of groundwater movement in phreatic aquifer systems. References: Davis, G.H., Payne, B.R., Dincer, T., Florkowski, T., Gattinger, T., 1967. Seasonal Variations in the Tritium Content of Groundwaters of the Vienna Basin, Austria, Isotope Hydrology 1967. IAEA, Vienna, Austria, IAEA, Vienna, Austria, pp. 451-473. Gerber, C., Purtschert, R., Kralik, M., Humer, F., Sültenfuss, J., Darling, G.W., Gooddy, D., 2012. Suitability and potential of environmental tracers for base-flow determination in streams: EGU2012-14066, EGU 12. European Geosciences Union, Vienna Stolp, B.J., Solomon, D.K., Suckow, A., Vitvar, T., Rank, D., Aggarwal, P.K., Han, L.-F., 2010. Age dating base flow at springs and gaining streams using helium-3 and tritium: Fischa-Dagnitz system, southern Vienna Basin, Austria. Water Resources Research 46. Suckow, A., 2012. Lumpy - an interactive Lumped Parameter Modeling code based on MS Access and MS Excel., EGU 12. European Geosciences Union, Vienna