dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel High Arctic Paraglacial Coastal Evolution in Northern Billefjorden, Svalbard
VerfasserIn Matt Strzelecki, Antony Long, Jerry Lloyd
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250077408
 
Zusammenfassung
Most sediment budget studies in paraglacial, High Arctic, environments have focussed attention on quantifying sediment fluxes in glacial and fluvial catchments. In contrast, little attention has been paid to the functioning of the paraglacial coastal zone with existing models of coastal change based on relict systems developed in mid latitude settings. The pristine coasts of Spitsbergen provided a superb opportunity to quantify how High Arctic coasts are respondingto rapid climate warming and associated paraglacial landscape transformation. In this paper we reconstruct the development of the paraglacial coasts in Petuniabukta and Adolfbukta, the northernmost bays of Billefjorden, central Spitsbergen. The study area is characterized by a sheltered location, a semi-arid, sub-polar climate, limited wave fetch and tidal range, and rapid retreat of all surrounding glaciers. Using a combination of geomorphological, sedimentological, remote sensing and dating methods, we study the processes controlling the coastal zone development over annual, century and millennial timescales. Interannual changes observed between 2008-2010 show that gravel barriers in the study area are resilient to the impacts of local storms and the operation of sea-ice processes. In general, the processes controlling the short-term barrier development often operate in the opposite direction to the landforming patterns visible in the longer-term evolution. Over multi-decadal timescales, since the end of the Little Ice Age. we observe drammatic changes in sediment flux and coastal response under an interval characterised by a warming climate, retreating local ice masses, a shortened winter sea-ice season and melting permafrost. A new approach of dating juvenile mollusc found in uplifted marine barriers led to the better understating of the Late Holocene evolution of a Petuniabukta coastal zone and its reaction to deglaciation, glacioisostatic uplift and sea-level fluctuations. We propose a new conceptual model that highlights the climate-driven sensitivity of sediment supply to paraglacial coastal systems and the dynamic interaction between terrestrial, oceanic and coastal systems. The study highlights the need for a greater understanding of the controls on High Arctic coastal sediment budgets, especially given the potential for future accelerated warming and sea-level rise.