dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel “Chlorine explosion” from sea-salt aerosols in a polluted atmosphere
VerfasserIn Joelle Buxmann, Sergej Bleicher, Cornelius Zetzsch, Ulrich Platt
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250077048
 
Zusammenfassung
Bromine and chlorine ’explosions’ (BE and CE) refer to autocatalytic, heterogeneous releases of reactive halogen species (RHS). ClO and BrO play a key role as RHS, as they influence the tropospheric oxidation capacity through destruction of ozone and fast reactions with nitrogen oxides. Besides OH radicals, Cl atoms react at a fast rate with the greenhouse gas methane, but the global effect is not clear yet. From smog-chamber experiments under tropospheric light conditions, ClO, OClO (from CE) and BrO (from BE) released from artificial sea salt aerosols were detected using a White system in combination with Differential Optical Absorption Spectroscopy (DOAS). Up to 17 ppb of ClO, 6 ppb of OClO and 1.6 ppb of BrO were observed under the influence of high NO2 and O3 concentrations. The RHS activation is triggered by NO2 reactions starting during the dark period. Formation of ClNO2 and ClONO2 and acidification of the aerosol by HNO3 or HONO play key roles. The lifetime of Cl2 of 645 s against photolysis in our smog chamber was estimated to be longer than the uptake onto the aerosol surface with a lifetime of 83s. The fact that Cl2 photolysis is slower compared to uptake, indicates that Cl2 might not be sufficient as a precursor for the observed ClO and OClO mixing rations during the chamber experiments at high NOx. Furthermore, OClO ( 40ppt/s) is formed at a faster rate than ClO ( 15ppt/s) in our experiments. A simple model, including the known gas phase reactions of halogen oxides, O3 and NOx, predicts the maximum ClO concentration to occur before the maximum OClO concentration. The measurement indicates the opposite. This suggests heterogeneous OClO formation. The lifetime of OClO against photolysis is only 20s in our chamber. But an actual heterogeneous release mechanism to form OClO has not been confirmed yet. Nevertheless, these results suggest that OClO is important for the heterogeneous release process. While BE has been demonstrated to occur in nature, the question remains how important CE is in the troposphere. The chlorine mechanism might become important in highly polluted marine areas, where high NO2 and O3 levels are present.