dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The propagation of a soil H218O labeling through the atmosphere-plant-soil system under drought using H218O and C18OO as two independent proxies
VerfasserIn Matthias Barthel, Patrick Sturm, Albin Hammerle, Rolf Siegwolf, Lydia Gentsch, Nina Buchmann, Alexander Knohl
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250076950
 
Zusammenfassung
Above- and belowground processes in plants are tightly coupled via carbon and water flows through the atmosphere-plant-soil system. While recent studies elucidated the influence of drought on the carbon flow through plant and soil using 13C, much less is known about the propagation of 18O. Therefore, this study aimed to examine the timing and intensity of 18O enrichment in soil and shoot CO2 and H2O vapor fluxes of European beech saplings (Fagus sylvatica L.) after applying 18O-labeled water to the soil. A custom-made chamber system, separating shoot from soil compartments, allowed independent measurements of shoot and soil related processes in a controlled climate chamber environment. Gas-exchange of oxygen stable isotopes in CO2 and H2O-vapor served as the main tool for investigation and was monitored in real-time using laser spectroscopy. This is the first study measuring concurrently and continuously the enrichment of 18O in CO2 and H2O in shoot- and soil gas-exchange after applying 18O-labeled water to the soil. Photosynthesis (A) and stomatal conductance (gs) of drought-stressed plants showed an immediate coinciding small increase to the H218O irrigation event after only ~30 min. This rapid information transfer, however, was not accompanied by the arrival of 18O labeled water molecules within the shoot. The actual label induced 18O enrichment in transpired water and CO2 occurred not until ~4h after labeling. Further, the timing of the enrichment of 18O in the transpirational flux was similar in both treatments, thus pointing to similar transport rates. However, drought reduced the 18O exchange rate between H2O and CO2at the shoot level, likely caused by a smaller leaf CO2retroflux. Moreover, 18O exchange between H2O and CO2 occurred also in the soil. However, the there was no difference observed between the treatments.