dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Estimation of Eruption Source Parameters from Plume Growth Rate
VerfasserIn Solene Pouget, Marcus Bursik, Peter Webley, Jon Dehn, Michael Pavalonis, Tarunraj Singh, Puneet Singla, Abani Patra, Bruce Pitman, Ramona Stefanescu, Reza Madankan, Donald Morton, Matthew Jones
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250076461
 
Zusammenfassung
The eruption of Eyjafjallajokull, Iceland in April and May, 2010, brought to light the hazards of airborne volcanic ash and the importance of Volcanic Ash Transport and Dispersion models (VATD) to estimate the concentration of ash with time. These models require Eruption Source Parameters (ESP) as input, which typically include information about the plume height, the mass eruption rate, the duration of the eruption and the particle size distribution. However much of the time these ESP are unknown or poorly known a priori. We show that the mass eruption rate can be estimated from the downwind plume or umbrella cloud growth rate. A simple version of the continuity equation can be applied to the growth of either an umbrella cloud or the downwind plume. The continuity equation coupled with the momentum equation using only inertial and gravitational terms provides another model. Numerical modeling or scaling relationships can be used, as necessary, to provide values for unknown or unavailable parameters. Use of these models applied to data on plume geometry provided by satellite imagery allows for direct estimation of plume volumetric and mass growth with time. To test our methodology, we compared our results with five well-studied and well-characterized historical eruptions: Mount St. Helens, 1980; Pinatubo, 1991, Redoubt, 1990; Hekla, 2000 and Eyjafjallajokull, 2010. These tests show that the methodologies yield results comparable to or better than currently accepted methodologies of ESP estimation. We then applied the methodology to umbrella clouds produced by the eruptions of Okmok, 12 July 2008, and Sarychev Peak, 12 June 2009, and to the downwind plume produced by the eruptions of Hekla, 2000; Kliuchevsko'i, 1 October 1994; Kasatochi 7-8 August 2008 and Bezymianny, 1 September 2012. The new methods allow a fast, remote assessment of the mass eruption rate, even for remote volcanoes. They thus provide an additional path to estimation of the ESP and the forecasting of ash cloud propagation. In cases where numerous ESP estimation methods are available, the uncertainty in estimated mass eruption rate can be calculated, contributing to probabilistic estimation of ash cloud propagation.