dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel An Study of S-wave Attenuation using records from the 20 May, 2012 Emilia Earthquake, Italy and the Main Aftershocks
VerfasserIn Raul Castro, Francesca Pacor, Rodolfo Puglia, Gabriele Ameri, Jean Letort, Marco Massa, Lucia Luzi, Paolo Augliera
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250074802
 
Zusammenfassung
We analyze the S-wave spectral amplitude decay with distance using strong-motion records from the 20 May 2012 Emilia-Romagna earthquake (Mw6.1) and five aftershocks with magnitudes ranging between 4.9 and 5.9. The data set consist of 6 earthquakes, 44 stations and 248 records with hypocentral distances in the range 10 < r < 100 km. We rotated the accelerograms to calculate transversal and radial components of the acceleration spectrum. We found nonparametric attenuation functions that describe the spectral amplitude decay of SH and SV waves with distance at 60 different frequencies between 0.1 and 40 Hz. These attenuation functions provide an estimate of the quality factor Q at each frequency analyzed. Assuming that geometrical spreading is 1-ˆ•r for r -‰¤ rx and 1/(rxr)0.5 for r>rx with rx= 60 km and normalizing at 15 km (the recording distance where the attenuation functions start to decay), we find that the average Q for SH waves can be approximated by QSH = 82f1.2 and by QSV = 79f1.2 for SV waves in the frequency range 0.10 -‰¤ f -‰¤ 10.7 Hz. At higher frequencies, 11.8 -‰¤ f -‰¤ 40 Hz, the frequency dependence of Q weakens and is approximated by QSH = 301f0.36 and QSV = 384f0.28. These results indicate that the S-wave attenuation is isotropic at local distances in the epicenter area. The estimates of total Q obtained (intrinsic and scattering attenuation) coincide with the estimates of total Q determined by Del Pezzo et al. (2011) in north central Italy using coda waves and Multiple Lapse Time Window Analysis (MLTWA).