dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Interglacial climate dynamics and advanced time series analysis
VerfasserIn Manfred Mudelsee, Miguel Bermejo, Peter Köhler, Gerrit Lohmann
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250074653
 
Zusammenfassung
Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the ’climate memory’ property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of ’acceptable’ accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R, Fischer H, Joos F, Knutti R, Lohmann G, Masson-Delmotte V (2010) What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews 29:129. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383. L¨ü thi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379. Mudelsee M (2000) Ramp function regression: A tool for quantifying climate transitions. Computers and Geosciences 26:293. Mudelsee M (2002) TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers and Geosciences 28:69. Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht, 474 pp. [www.manfredmudelsee.com/book] Siegenthaler U, Stocker TF, Monnin E, L¨ü thi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science 310:1313.