dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Partitioning belowground CO2 emissions for a Miscanthus plantation in Lincolnshire, UK
VerfasserIn Andrew Robertson, Pete Smith, Christian Davies, Emily Bottoms, Niall McNamara
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250073319
 
Zusammenfassung
Miscanthus is a lignocellulosic crop that uses the Hatch-Slack (C4) photosynthetic pathway as opposed to most C3 vegetation native to the UK. Miscanthus can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by reducing carbon (C) emissions associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC), however full greenhouse gas (GHG) budgets must be calculated. Consequently, we monitored emissions of N2O, CH4 and CO2 from Miscanthus roots, decomposing plant litter and soil individually to quantify and partition these emissions and better understand the influence of abiotic factors on SOC and GHG dynamics under Miscanthus. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input to the soil by way of controlled exclusion techniques. Treatments excluded roots only (“No Roots”), surface litter only (“No Litter”), both roots and surface litter (”No Roots or Litter”) or had double the litter amount added to the soil surface (“Double Litter”). A fifth treatment was a control with undisturbed roots and an average amount of litter added. Monthly measurements of CO2, CH4 and N2O emissions were taken at the soil surface from each treatment between March 2009 and March 2013, and soil C from the top 30 cm was monitored in all plots over the same period. Miscanthus-derived SOC was determined using the isotopic discrimination between C4 plant matter and C3 soil, and the treatments were compared to assess their effects on C inputs and outputs to the soil. Both CH4 and N2O emissions were below detection limits, mainly due to a lack of fertiliser additions and limited management of the agricultural site. However, ongoing results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2 emissions in winter and spring whereas root respiration dominates the summer and autumn fluxes. Results to date indicate that the “No Roots or Litter” and “No Litter” treatments have significantly less Miscanthus-derived C, and therefore significantly less CO2 emitted from decomposing ’new’ C. We hypothesised that the high C input treatments would stimulate large outputs but also increase soil C stocks. However, whilst CO2 efflux varies significantly between treatments, results from the first two years of the experiment do not suggest that any increase in SOC is significant. Four years of continuous monitoring, chemical and physical soil fractionation and ecosystem C cycle modelling will allow a more comprehensive analysis to partition belowground trace gas efflux by plant input and over time.