dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Complex response of dinoflagellate distribution patterns to cooler early Oligocene global oceans
VerfasserIn Mark Woods, Thijs Vandenbroucke, Mark Williams, James Riding, Stijn De Schepper, Koen Sabbe
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250072977
 
Zusammenfassung
Analysis of dinoflagellate cysts using two new global ocean datasets for the Mid Eocene (Bartonian) and Early Oligocene (Rupelian) reveals unexpected changes in their global distribution. The impact of Rupelian cooling appears to be globally asymmetric; the dinoflagellate cyst cooling signal is clearer in the southern hemisphere, but much less evident in the northern hemisphere. Additionally, a significant number of species with low and mid-latitude northern hemisphere occurrences in the Bartonian, unexpectedly extend their northward ranges in the Rupelian, including some ‘warm water’ forms. This may show that Rupelian dinoflagellate cyst distribution is a response to changes in a range of environmental variables linked to climate-cooling, for example changes in nutrient fluxes triggered by glacially-induced base-level fall, or complex reorganisation of ocean current systems between the Bartonian and Rupelian. Apparent lack of a clear climate-cooling signal in Rupelian dinoflagellate cyst distribution may in part reflect published evidence suggesting that summer SSTs in the early Rupelian northern hemisphere were only slightly reduced compared to the later part of the Eocene, despite much colder winters. The relatively broad temperature tolerance of many extant dinoflagellate species, and dormant cyst formation during short-lived environmental deterioration, may have contributed to allowing Rupelian dinoflagellates to thrive in more highly seasonal but otherwise hospitable, northern hemisphere oceans.