dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Contrasting strike-slip motions on thrust and normal faults: Implications for space-geodetic monitoring of surface deformation
VerfasserIn Andrea Hampel, Tao Li, Georgios Maniatis
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250072616
 
Zusammenfassung
Recent GPS records of surface deformation caused by earthquakes on intra-continental dip-slip faults revealed in unprecedented detail a significant strike-slip component near the fault tips, which is markedly different for thrust and normal faults. In the hanging wall of the thrust fault ruptured during the 2003 Chengkung (Taiwan) earthquake, a divergent displacement pattern was recorded (Hsu et al., 2009). In contrast, a convergent slip pattern was observed in the hanging wall of the normal fault that produced the 2009 L'Aquila (Italy) earthquake (Cheloni et al., 2010; Serpelloni et al., 2012). Remarkably, such convergent slip patterns are also evident in field records of cumulative fault slip (e.g., Jackson et al., 1982; Roberts & Koukouvelas 1996), which underlines the coseismic origin of the cumulative slip pattern. Here we use three-dimensional numerical modeling to demonstrate that the observed fault-parallel motions are a characteristic feature of the coseismic slip pattern on normal and thrust faults (Hampel et al., in press). Modeled slip vectors converge toward the center of normal faults whereas they diverge for thrust faults, which causes contrasting fault-parallel displacements at the model surface. Our model also predicts divergent movements in normal fault footwalls, which were recorded for the first time during the L'Aquila earthquake. During the postseismic phase, viscous flow in the lower crust induces fault-parallel surface displacements, which have the same direction as the coseismic displacements but are distributed over a larger area that extends far beyond the fault tips. Hence, detecting this signal requires GPS stations in the prolongation of the fault's strike. Postseismic velocities vary over several orders of magnitude depending on the lower-crustal viscosity and may reach tens of millimeters per year for low viscosities. Our study establishes the link between coseismic and cumulative slip patterns on normal and thrust faults and emphasizes that understanding fault-parallel slip components and associated surface displacements is essential for inferring regional deformation patterns from space-geodetic and fault-slip data. References: Cheloni, D., N. D’Agostino, E. D’Anastasio, A. Avallone, S. Mantenuto, R. Giuliani, M. Mattone, S. Calcaterra, P. Gambino, D. Dominici, F. Radicioni, G. Fastellini (2010) Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L’Aquila earthquake, Italy, from GPS measurements: Geophysical Journal International, 181, 1539–1546. Hampel, A., T. Li, G. Maniatis (in press) Contrasting strike-slip motions on thrust and normal faults: Implications for space-geodetic monitoring of surface deformation: Geology. Hsu, Y.-J., S.-B Yu, H.-Y. Chen (2009) Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake: Geophysical Journal International, 176, 420–430. Jackson, J.A., J. Gagnepain, G. Houseman, G.C.P. King, P. Papadimitriou, C. Soufleris, J. Virieux (1982) Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): The Corinth earthquakes of February and March 1981: Earth and Planetary Science Letters, 57, 377–397. Roberts, G.P., I. Koukouvelas (1996) Structural and seismological segmentation of the Gulf of Corinth fault system: Implications for models of fault growth: Annali di Geofisica, 39, 619–646. Serpelloni, E., L. Anderlini, M.E. Belardinelli (2012) Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements: Geophysical Journal International, 188, 473–489.