dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel IDC Infrasound Pipeline development
VerfasserIn P. Mialle, P. Bittner, D. Brown, J. Given
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250069415
 
Zusammenfassung
The first atmospheric event built only from infrasound arrivals was reported in the Reviewed Event Bulletin (REB) of the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) in 2003. In the last decade, 44 infrasound stations from the International Monitoring System (IMS) have been installed and are transmitting data to the IDC. The growing amount of infrasound data and detections produced by the automatic system challenged the station and network processing at the IDC, which require the Organization to improve the infrasound data processing. For nearly 2 years, the IDC resumed automatic processing of infrasound data reviewed by interactive analysis; the detected and located events are being systematically included in the Late Event Bulletin (LEB) and REB. Approximately 16% of SEL3 (Selected Event List 3, produced 6 hours after real-time) events with an infrasound component make it to the IDC bulletins and 41% of SEL3 events rejected after review are built including only 2 associated infrasound phases (and potentially seismic and hydroacoustic detections). Therefore, the process whereby infrasound and seismic detections are associated into an event needed to be investigated further. The IDC works on enhancing the automatic system for the identification of valid signals and the optimization of the network detection threshold. Thus the IDC investigates ways to refine the signal characterization methodology and the association criteria. The objective of this study is to reduce the number of associated infrasound arrivals that are rejected from the SEL3 pipeline when generating the LEB and REB bulletins. The study is performed in the virtual Data Exploitation Center (vDEC) from the CTBTO in order to separate the automatic processing into two streams: seismic and hydroacoustic (SH) pipeline on one side, and infrasound (I) pipeline on the other side. The “fusion” of the two parallel event-forming streams will have to be designed. The IDC executes its association algorithm called Global Association (GA) on infrasound data for selective periods of times, which follow the introduction of infrasound in the IDC automatic system. The IDC also anticipates that infrasound rules in GA would be tuned to pursue a lower ratio of false alarms and the IRED (IDC Infrasound Reference Event Database) will be used for testing and validation of potential modification in the infrasound processing software and algorithms.