dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The carbon cycle during recent interglacials
VerfasserIn T. Kleinen, V. Brovkin
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250066935
 
Zusammenfassung
Climate evolution during recent interglacials, the interglacials of the last 800 ka, shows similarities and dissimilarities. Especially the evolution of atmospheric carbon dioxide, as displayed by Antarctic ice cores, requires further investigation in order to explain differences and similarities between interglacials. Explaining the difference in carbon cycle dynamics (and hence atmospheric CO2) between various interglacials is an elusive issue. Several biogeochemical mechanisms of different origin are involved in interglacial CO2 dynamics, leading to a CO2 release from the ocean (carbonate compensation, CaCO3 sedimentation) compensated by a land carbon uptake (biomass and soil carbon buildup, peat accumulation). The balance between these fluxes of CO2 is delicate and time-dependent, and it is not possible to provide firm constraints on these fluxes from proxy data. The best framework for quantification of all these mechanisms is an Earth System model that includes all necessary physical and biogeochemical components of the atmosphere, ocean, and land. To perform multi-millennial model integrations through various interglacials, we use an earth system model of intermediate complexity, CLIMBER-2, coupled to the dynamic global vegetation model LPJ with a recently implemented module for boreal peatland dynamics. During glacial-interglacial cycles, the carbon cycle never is in complete equilibrium due to a number of small but persistent fluxes such as terrestrial weathering. This complicates setting up interglacial experiments as the usual approach to start model integrations from an equilibrium state is not valid any more. In order to circumvent the problem of non-equilibrium initial conditions, the model is initialised with the oceanic biogeochemistry state taken from a transient simulation through the last glacial cycle with CLIMBER-2 only. In this simulation, the CLIMBER-2 model was run through the last glacial cycle with carbon cycle in “offline mode” as interactive components of the physical climate system (atmosphere, ocean, ice sheets) were driven by concentration of greenhouse gases reconstructed from ice cores. Using these initial conditions, we used CLIMBER2-LPJ to perform interactively coupled climate carbon cycle experiments for the Holocene and the Eemian, as well as Marine Isotope Stages 11, 13 and 15, driven by orbital forcing and prescribed ice sheets. Contrary to the results we published previously (Kleinen et al. 2010), peat accumulation was not prescribed, but rather determined dynamically, making this model setup applicable to previous interglacials as well. For the Holocene, our results resemble the carbon cycle dynamics as reconstructed from ice cores quite closely, both for atmospheric CO2 and δ13CO2. These experiments will be presented, analysing the role of different forcing mechanisms. The land surface appears to be an overall sink for CO2, due to carbon accumulation in the soil, as well as peat accumulation, and oceanic contributions due to temperature and circulation changes are quite small. We present results from these simulations, analysing the evolution of the carbon cycle in these modelled interglacials, and how it compares to results from ice cores.