dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel On the timing of high-pressure metamorphism in Alpine Corsica: the first Lu-Hf garnet and lawsonite ages
VerfasserIn A. Vitale Brovarone, D. Herwartz, D. Castelli, J. Malavieille
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250066439
 
Zusammenfassung
Timing of HP metamorphism in Alpine Corsica is highly debated. Controversial biostratigraphic and radiometric constraints results in a poor understanding of the evolution of Alpine Corsica and its meaning in the Western Mediterranean dynamics. Age estimates provided by means of several techniques (e.g. Ar-Ar, Sa-Nd, U-Pb) vary form Late Cretaceous to Late Eocene. Some authors favor a Late Cretaceous peak metamorphism under HP conditions followed by Late Eocene and Early Oligocene blueschist and greenschist retrogression, respectively. Others favor a Late Eocene peak metamorphism and consider the older estimates as affected by analytical inaccuracy. In order to unravel this debate, we provide new Lu-Hf constraints on garnet and lawsonite from the lawsonite-eclogite and lawsonite-blueschist units of Alpine Corsica, which represent a part of the so-called Schistes Lustrés complex. The two investigated units are interpreted to represent remnants of the former Corsican ocean-continent transition zone [2]. As Lu concentrates in the cores of the selected minerals during the early stages of growth and blocking temperatures are high, this method provides robust insight on the timing of prograde/peak metamorphism [1]. Garnet and lawsonite separated form three lawsonite-eclogite samples yield systematic Late Eocene ages at ~ 34 Ma, while lawsonite from the lawsonite-blueschist unit yields a slightly older age at ~ 37 Ma. These data are in agreement with U-Pb data on zircon from the lawsonite-eclogite unit (~ 34 Ma) [3], but are in contrast with a recent U-Pb estimate on the Corsican continental margin unit metamorphosed under blueschist condition, yielding an age of ~ 55 Ma [4]. These discrepancies indicate a complex paleogeographic setting and a diachronous metamorphic evolution along the Corsican ocean-continent transition zone. The Late Eocene HP metamorphism in the Schistes Lustrés of Alpine Corsica also provides important constraints in the evolution of the Alps-Apennine system and the surrounding Western Mediterranean area. [1] Skora, S., Baumgartner, L.P., Mahlen, N.J., Lapen, T.J., Johnson, C.M., Bussy, F. 2008. Estimation of a maximum Lu diffusion rate in a natural eclogite garnet. Swiss J. Geosci. DOI: 10.1007/s00015-008-1268-y. [2] Vitale Brovarone, A., Beltrando, M., Malavieille, J., Giuntoli, F, Tondella, E, Groppo, C., Beyssac, O. and Compagnoni, R., 2011a. Inherited Ocean-Continent Transition zones in deeply subducted terranes: Insights from Alpine Corsica, Lithos, doi: 10.1016/j.lithos.2011.02.013. [3] Martin., L., Rubatto, D., Vitale Brovarone, A., Hermann, J. 2011. Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica. Lithos, doi:10.1016/j.lithos.2011.03.015 [4] Maggi M, Rossetti F, Theye T, Andersen T, Corfu F, Faccenna C. Sodic Pyroxene Bearing Phyllonites From the East Tenda Shear Zone: Constraining P-T Conditions and Timing of the Ligurian-Piemontese Ocean Overthrusting Onto the Variscan Corsica. Abstract Corsealp 2011. Saint Florent, Corsica, France.