dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Leaf photosynthesis/respiration relationships of different tree species in the northwestern part of Russia.
VerfasserIn V. Pridacha, T. Sazonova, A. Olchev
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250065503
 
Zusammenfassung
Measurements of leaf photosynthesis, respiration and stomatal conductance of Norway spruce (Picea abies (L.) Karst), Silver (Betula pendula Roth), White (Betula pubescens) and Karelian (Betula pendula var. carelica) birches were provided using the portable photosynthesis system LI-6400 (Li-Cor, USA) on the experimental plots of the Forest research Institute of Karelian Research Center of RAS in Petrozavodsk, Russia. LI-6400 allows to provide the measurements of photosynthesis and respiration rates of individual leaves at various PAR, temperatures, humidity and concentration of CO2 in the measuring chamber. During the field campaigns in 2011 the CO2 and light response curves of photosynthesis of leaves under different air temperatures as well as the temperature response functions of dark respiration (Rd) of the leaves of different species were estimated. The measuring program is include also the measurements of nitrogen content in leaves. The method suggested by Sharkey et al (2007) was used to estimate the maximal velocity of Rubisco for carboxylation (Vcmax), the rate of electron transport at light saturation (Jmax), photorespiratory compensation point as well as the rate of use of triose phosphates (TPU) that characterizes the availability of internal inorganic phosphates (Ci) in leaves for Calvin’s cycle. It was assumed that the initial slope of the relationship between leaf photosynthesis rate and CO2 concentration in sub-stomatal air space (Ci < 200 ppm) can be considered as an area of Rubisco limitation of photosynthesis. The upper part of CO2 response curve from approximately 300 ppm and higher is influenced by, first of all, the rate of regeneration of RuBP, and after that by availability of inorganic phosphate in leaves. The temperature dependences of Vcmax, Jmax and TPU were estimated using the statistical analysis of Vcmax and Jmax data set using equations suggested by Medlin et al (2002). Temperature dependence function of TPU was derived using algorithm proposed by Sharkey et al (2007). The results of field measurements in summer 2011 show a relatively weak differences among Vcmax, Jmax and TPU, and also Rd for Silver, White and Karelian birches. The maximal values of Vcmax (T=25˚ C) are obtained for the Karelian birch (Vcmax (T=25˚ C) = 117 μmol m-2 s-1), and the minimum values - for the Silver birch (Vcmax (T=25˚ C) = 97 μmol m-2 s-1). The maximum values Jmax (T=25˚ C) are obtained for the White birch (Jmax (T=25˚ C) = 164 μmol m-2 s-1), and minimum also for the Silver birch (Jmax (T=25˚ C) = 157 μmol m-2 s-1). Values TPU max are varied from 11.0 to 12.3 μmol m-2 s-1, and Rd (T=25˚ C) - from 2.0 to 2.4 μmol m-2 s-1. The results of provided leaf photosynthesis, respiration and stomatal conductance measurements were used in the process-based Mixfor-SVAT model (Olchev et al 2002, 2008) to derive the possible response of CO2/H2O budgets of Karelian forest ecosystems to future climatic changes. The study was supported by grants (11-04-01622-a and 09-04-00299-a) of the Russian Foundation of Basic Research (RFBR).