dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Using carbon isotope fractionation for an improved quantification of CH4 oxidation efficiency in Arctic peatlands
VerfasserIn I. Preuss, C. Knoblauch, J. Gebert, E.-M. Pfeiffer
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250065470
 
Zusammenfassung
Much research effort is focused on identifying global CH4 sources and sinks to estimate their current and potential strength in response to land-use change and global warming. Aerobic CH4 oxidation is regarded as the key process reducing the strength of CH4 emissions in wetlands, but is hitherto difficult to quantify. Recent studies quantify the efficiency of CH4 oxidation based on CH4 stable isotope signatures. The approach utilizes the fact that a significant isotope fractionation occurs when CH4 is oxidized. Moreover, it also considers isotope fractionation by diffusion. For field applications the ‘open-system equation’ is applied to determine the CH4 oxidation efficiency: fox = (δE – δP)/ (αox – αtrans) where fox is the fraction of CH4 oxidized; δE is δ13C of emitted CH4; δP is δ13C of produced CH4; αox is the isotopic fractionation factor of oxidation; αtrans is the isotopic fractionation factor of transport. We quantified CH4 oxidation in polygonal tundra soils of Russia’s Lena River Delta analyzing depth profiles of CH4 concentrations and stable isotope signatures. Therefore, both fractionation factors αox and αtrans were determined for three polygon centers with differing water table positions and a polygon rim. While most previous studies on landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1), other CH4 transport mechanisms as diffusion have to be considered in peatlands and αtrans exceeds a value of 1. At our study we determined αtrans = 1.013 ± 0.003 for CH4 when diffusion is the predominant transport mechanism. Furthermore, results showed that αox differs widely between sites and horizons (αox = 1.013 ± 0.012) and has to be determined for each case. The impact of both fractionation factors on the quantification of CH4 oxidation was estimated by considering both the potential diffusion rate at different water contents and potential oxidation rates. Calculations for a water saturated tundra soil indicated a CH4 oxidation efficiency of 88% in the upper horizon. Using carbon isotope fractionation improves the in situ quantification of CH4 oxidation in wetlands and thus the assessment of current and potential CH4 sources and sinks in these ecosystems.