dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Using OLCI/Sentinel-3 and Sentinel-5-P data synergistically for retrieving different phytoplankton groups from space
VerfasserIn A. Bracher, T. Dinter, M. Altenburg Soppa, B. Taylor, V. Rozanov
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250064867
 
Zusammenfassung
We are proposing the development of an algorithm, using the combination of data from OCLI (Sentinel-3) and Sentinel-5P sensors, which derives globally pyhtoplankton groups (phytoplankton functional types) biomass. The information of the total biomass will be achieved by standard processing of the Chlorophyll-a (chl-a) concentration using satellite data from multispectral imaging instruments (firstly SeaWiFS, MODIS and MERIS merged within the GlobColour data set, later OLCI data). The percentage of the main phytoplankton types on the total biomass will be retrieved by the analysis of characteristic absorption features in hyperspectral satellite measurements (firstly SCIAMACHY, later Sentinel-5-P) using the PhytoDOAS method by Bracher et al. (2009) and improved by Sadeghi et al. (2011). Thus, a synergistic product from information of multi- and hyperspectral satellite instruments which complements one another will be developed. The two instruments of the Sentinel mission will enable a data product of weekly to monthly temporal and 7 km by 7 km spatial resolution. On the the SCIAMACHY/Globcolour product (starting in 2002 until today) will be limited to a monthly and 0.5° degree resolution. The application of the algorithm is for assessing the spatial and temporal variability of specific phytoplankton types’ biomass on longer time scale (10 to 20 and more years) with global coverage. This will engross the understanding of the role of different phytoplankton types in the world ocean's ecosystem and improve estimates on the contribution of different phytoplankton types to the global carbon cycle. The concept of the algorithm development, including its uncertainity determined via validaton with in-situ phytoplankton data and sensitivity studies using the coupled atmospheric-oceanic radiative transfer model SCIATRAN (Rozanov et al. 2002, Blum et al. in press) and examples for its application are given in the presentation. References: Bracher A., Vountas M., Dinter T., Burrows J.P., Röttgers R., Peeken I. (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences, 6, 751-764. Blum M., Rozanov V., Burrows, J. P., Bracher A. (in press) Coupled ocean-atmosphere radiative transfer model in framework of software package SCIATRAN: Selected comparisons to model and satellite data. Adv. in Space Res., in press. Rozanov V.V., Buchwitz M., Eichmann K.-U., de Beek R., Burrows J.P. (2002): Sciatran - a new radiative transfer model for geophysical applications in the 240-2400 nm spectral region: the pseudo-spherical version, Adv. in Space Res., 29, 1831–1835. Sadeghi A., Dinter T., Vountas M., Taylor B., Peeken I., Bracher A. (2010) Improvements to the PhytoDOAS method for the identification of major Phytoplankton groups using high spectrally resolved satellite data. Ocean Sci. Discuss., 8, 2271-2311, doi:10.5194/osd-8-2271-2011, 2011.