dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Does numerical modelling of apparent partial loss Ar/Ar age spectra of hornblende give the correct thermal history of terranes? Insights from the Palaeoproterozoic Lapland-Kola orogen (Russia)
VerfasserIn K. de Jong
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250063047
 
Zusammenfassung
We investigate the validity of numerical modelling of hornblende 40Ar/39Ar age spectra obtained from the same sample by step-heating with: 1) a defocused laser on 1.5 mm diameter discs micro-sampled from polished petrographic thin sections with a microscope-mounted drill, and 2) a resistance-heated furnace using handpicked mineral separate. Micro-sampling enables to obtain parts of mineral grains without zoning or included phases from targeted sites. Three samples were analysed: a tonalitic gneiss and a biotite-bearing amphibolite, from the same outcrop-1, and a biotite-free amphibolite from neighbouring outcrop-2. The material is from the Neoarchaean Murmansk terrane in the Palaeoproterozoic Lapland-Kola collisional belt along the northern margin of the Fennoscandian (Baltic) Shield. Hornblendes from the biotite-bearing gneiss and amphibolite (outcrop-1) yielded 40Ar/39Ar age spectra with progressively increasing step ages, whereas the biotite-free amphibole (outcrop-2) gave flat age spectra for both drilled disc and separate. These so-called staircase-type age spectra have been classically interpreted by partial loss of radiogenic argon by diffusion processes during younger thermal reworking. We applied numerical modelling tools (Double-Pulse, MacArgon) based on diffusion theory and that assume thermally activated loss of radiogenic Ar from so-called lower retentive lattice sites by solid-state volume diffusion. Modelling results suggest that staircase-shaped age spectra of our Neoarchaean hornblende are due to argon losses of 40-50% during reheating to 450 ± 25˚ C in Palaeoproterozoic time, and that flat spectra imply a thermally undisturbed Neoarchaean isotope system. These results would imply that neighbouring samples would have experienced sharply contrasting thermal histories. Hornblende with apparent partial loss age spectra is exclusively obtained from samples in which