dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Severe dead-zone eddies in the open North Atlantic Ocean
VerfasserIn J. Karstensen, B. Fiedler, P. Brandt, A. Körtzinger, R. Zantopp, D. Wallace, G. Krahmann, M. Visbeck, J. Hahn
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250062973
 
Zusammenfassung
Ocean volumes with very low dissolved oxygen, so called “dead-zones”, have been observed in many coastal areas of the world ocean. Dead-zones are characterized by a dissolved oxygen content below 2 mg/l (approx. 60 µmol/kg) and making them inhabitable for many marine organisms. Here we report on severe dead-zones in the open North Atlantic, several hundreds of kilometres away from the coast, where so far concentrations below about 40 µmol/L have not been reported. The severe dead-zones are contained within mesoscale eddies that originate from the West African upwelling region and propagate slowly (100km per month) westward. Local dynamics isolate the dead-zone eddy from surrounding waters and create, within the rather well oxygenated North Atlantic, a biogeochemical realm comparable to the major oxygen minimum zone (OMZ) of the Pacific and Indian Ocean. Below a well oxygenated upper mixed-layer of some 20 to 50m depth follows a drastic drop in oxygen, which is the actual dead-zone. In one the most dramatic case of a North Atlantic dead-zone eddy, the oxygen content right below the mixed layer (50m depth) was approximately 0 µmol/kg, while the 60µmol/kg dead-zone threshold was reached at about 200m depth, resulting in a dead-zone 150m deep. It was found that mobile marine organisms are unable to follow their diurnal vertical migration and are trapped in the mixed layer, above the dead-zone, instead. Our data suggest that most severe low-oxygen ocean conditions (~0 µmol/L) are created just below the surface mixed layer in anti-cyclonic Mode Water type eddies, but still significant (~15 µmol/L) concentrations were observed in a cyclonic eddy.