dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The Orbiting Carbon Observatory (OCO-2) Mission and Experience Gained from the Greenhouse gases Observing Satellite (GOSAT)
VerfasserIn A. Eldering, M. Gunson, D. Crisp, C. E. Miller
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250061742
 
Zusammenfassung
The NASA Orbiting Carbon Observatory (OCO-2) will make space-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to characterize CO2 sources and sinks on regional scales and quantify their variability over the seasonal cycle. The OCO-2 mission will be a ‘carbon copy’ of the OCO mission, to minimize schedule and cost risks. The OCO-2 instrument has been built and is undergoing testing and characterization. OCO-2 will carry a single instrument that incorporates 3 high resolution grating spectrometers that will make bore-sighted measurements of reflected sunlight in near-infrared CO2 and molecular oxygen (O2) absorption bands. These measurements will be combined to provide spatially resolved estimates of the column-averaged CO2 dry air mole fraction, XCO2. The instrument collects 12 to 24 XCO2 soundings/second over the sunlit portion of the orbit, yielding 200 to 400 soundings per degree of latitude, or 0.5 to 1 million soundings every day. Thick clouds and aerosols will reduce the number of soundings available for XCO2 retrievals by 80-90%, but the remaining data is expected to yield XCO2 estimates with accuracies of ~0.3 to 0.5% (1 to 2 ppm) on regional scales every month. To verify the accuracy of the space-based XCO2 data, the OCO-2 validation program will use ground-based, solar-viewing Fourier Transform Spectrometers (FTS) in the Total Carbon Column Observing Network (TCCON) to tie the space-based XCO2 with the World Meteorological Organization (WMO) standard for atmospheric CO2, which is based on in situ observations of CO2 from flask measurements, tall towers, and aircraft. In preparation for the OCO-2 mission, we are using the OCO-2 algorithm to retrieve XCO2 from GOSAT measurements. We now retrieved XCO2 from GOSAT data from April 2009 to present. These retrievals are being validated with the TCCON network. This presentation will provide an overview of OCO-2 mission, including science objectives, instrument, algorithm, and validation plans as well as recent results from the GOSAT retrievals.