dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel GOAT (Global Oxygen And Temperature) Mapping
VerfasserIn T. G. Slanger, O. Kostko, D. A. Pejakovic, K. S. Kalogerakis
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250061213
 
Zusammenfassung
The O2(b1Σg+ - X3Σg-) Atmospheric Band system has been studied extensively since the days of Fraunhofer, who first showed that solar photoabsorption in the 762 nm region was caused by terrestrial oxygen; in this case, the 0-0 band of the b - X system. The O2(b) state is generated by two different mechanisms in the atmosphere: by O(3P ) atom recombination, where O2(b) is one of several excited O2 states produced, and by the energy transfer from O(1D) to O2, where the products are O2(b, v = 0, 1). The latter is an ionospheric process and is the case of interest here. Recent studies at SRI International have demonstrated that O2(b, v = 1) is the predominant product of the energy transfer, with the nascent [v = 1]/[v = 0] ratio being close to 4 and temperature independent. Collisional quenching of b(1) by O2, to produce b(0), proceeds six orders of magnitude faster than b(0) quenching [Slanger and Copeland, 2003]. As a consequence, the [b - X(1-1)]/[b - X(0-0)] intensity ratio as a function of thermospheric altitude shows the degree to which b(1) has been converted to b(0), which can be interpreted in terms of atmospheric composition. Of the three colliders — O2, O(3P ), and N2 — it is the first two that control the b(1) -†’ b(0) relaxation rate. To observe the b(v = 0, 1) emission requires space-based measurements in the 755-780 nm region of the 0-0 and 1-1 bands. In addition to the varying intensity ratio of the two bands, the shapes will differ as a function of temperature as the rotational temperature changes. Thus, observations of the shapes and the relative intensities of the two bands will simultaneously lead to information on temperature and on the [O2] + [O(3P )] densities as a function of altitude. The technique is relevant to the dayglow and to the portion of the night when O(1D) is still detectable. T. G. Slanger and R. A. Copeland, Chem. Rev. 103, 4731-65, 2003. Supported by NASA ITM Grant NNX10AL08G and NSF Aeronomy Grant AGS-0937317.