dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Apportionment of carbon dioxide over central Europe: insights from combined measurements of atmospheric CO2 mixing ratios and carbon isotope composition
VerfasserIn M. Zimnoch, D. Jelen, M. Galkowski, T. Kuc, J. Necki, L. Chmura, Z. Gorczyca, A. Jasek, K. Rozanski
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250060870
 
Zusammenfassung
The European continent, due to high population density and numerous sources of anthropogenic CO2 emissions, plays an important role in the global carbon budget. Nowadays, precise measurements of CO2 mixing ratios performed by both global and regional monitoring networks, combined with appropriate models of carbon cycle, allow quantification of the European input to the global atmospheric CO2 load. However, measurements of CO2 mixing ratios alone cannot provide the information necessary for the apportionment of fossil-fuel related and biogenic contributions to the total CO2 burden of the regional atmosphere. Additional information is required, for instance obtained through measurements of radiocarbon content in atmospheric carbon dioxide. Radiocarbon is a particularly useful tracer for detecting fossil carbon in the atmosphere on different spatial and temporal scales. Regular observations of atmospheric CO2mixing ratios and their isotope compositions have been performed during the period of 2005-2009 at two sites located in central Europe (southern Poland). The sites, only ca. 100 km apart, represent two extreme environments with respect to the extent of anthropogenic pressure: (i) the city of Krakow, representing typical urban environment with numerous sources of anthropogenic CO2, and (ii) remote mountain site Kasprowy Wierch, relatively free of local influences. Regular, quasi-continuous measurements of CO2 mixing ratios have been performed at both sites. In addition, cumulative samples of atmospheric CO2 have been collected (weekly sampling regime for Krakow and monthly for Kasprowy Wierch) to obtain mean carbon isotope signature (14C/12C and 13C/12C ratios) of atmospheric CO2 at both sampling locations. Partitioning of the local atmospheric CO2 load at both locations has been performed using isotope- and mass balance approach. In Krakow, the average fossil-fuel related contribution to the local atmospheric CO2 load was equal to approximately 3.4%. The biogenic component turned out to be of the same magnitude. Both components revealed a distinct seasonality, with the fossil-fuel related component reaching maximum values during winter months and the biogenic component shifted in phase by ca. 6 months. Seasonality of fossil-fuel related CO2 load in the local atmosphere is linked with seasonality of local CO2sources, mostly burning of fossil fuels for heating purposes. Positive values of biogenic component indicate prevalence of the local respiration and biomass burning processes over local photosynthesis. Summer maxima of biogenic CO2 component represent mostly local respiration activity. Direct measurements of soil CO2 fluxes in the Krakow region showed an approximately 10-fold increase of those fluxes during the summer months. Partitioning of the local CO2 budget for Kasprowy Wierch site revealed large differences in the derived components when compared to urban atmosphere of Krakow: the fossil-fuel related component was ca. 5 times lower whereas the biogenic component was negative in summer, pointing to the importance of photosynthetic sink associated with extensive forests in the neighborhood of the station. The isotope- and mass balance approach was also used to derive mean monthly 13C isotope signature of fossil-fuel related CO2 emissions in Krakow. Although the derived δ13CO2 values revealed large variability, they are confined in the range of 13C isotope composition being reported for various sources of CO2 emissions in the city (burning of coal and oil, burning of methane gas, traffic).