dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Stages of Late Mesozoic granitoid magmatism of Chukotka (NE Russia)
VerfasserIn M. V. Luchitskaya, S. D. Sokolov, A. V. Moiseev
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250060325
 
Zusammenfassung
The main tectonic structure of Chukotka is Anyui-Chukotka fold system with Precambrian crystalline basement and Paleozoic–Mesozoic cover (platform, shelf, and passive margin deposits). In the eastern part its structures are overlain by Albian-Campanian Okhotsk-Chukotka volcanic belt. Age and geodynamic setting of Late Mesozoic granitoid complexes of Anyui-Chukotka fold system (Chukotka Mesozoides) are always the subject of discussions. Different researchers distinguish various complexes, phases, duration and beginning of Late Mesozoic (mainly Cretaceous) granitoid activity in Chukotka region [1–16]. Our previous data [17–19] indicate that we have 117–112 Ma timespan (U-Pb SHRIMP zircon data) of granitoid activity in Alarmaut granite-metamorphic dome (W.Chukotka) related to extension following collision between Arctic Alaska – Chukotka microcontinent and North-Asian continent. Granitoid magmatism of Koolen’ and Velitkenay granite-migmatite domes (E.Chukotka) is younger, 109–94 Ma. [20–22]. We used SHRIMP-II to date zircons from three granitoid plutons in E.Chukotka (interfluve of Vel’may, Bolshoy Vel’may and Amguem rivers), referred to Early Cretaceous Taureransky complex on regional geologic maps, scale 1:500000. The first pluton intrudes Devonian-Lower Carboniferous terrigenous and carboniferous (?) deposits in the central part of brachyanticline structure. These deposits are metamorphosed from greenschist to amphibolite facies. The structure is similar to Alarmaut granite-metamorphic dome. We sampled foliated granites and cutting them granite-porphyre. 10 analyses from foliated granites give discordant ages with intercepts at 487±300 and 968±54 Ma. Nine of 10 analyses from granite-porphyre yield a concordant age of 93.74±0.97 Ma. The second and third plutons cut Lower-Middle Tirassic shales. We sampled quartz monzonite and syenite from both plutons, which comprise early phase of Taureransky complex. Syenite yields a weighted mean age U-Pb of 135± 0.5 Ma for 10 of 10 individual analyses and quartz monzonite, 110.39±0.78 Ma. We interpret Paleozoic and Late Proterozoic ages of foliated granitoids as protolith ages and Upper Cretaceous age of granite-porphyre corresponds to slab-related Okhotsk-Chukotka volcanic and plutonic rocks. The Albian age of quartz monzonite may reflect the late stages of post-collisional extension during granite-migmatite domes evolution. It is difficult to relate Valanginian age of syenite to distinct tectonic event in the region. Zhulanova et al. [11] consider that Valanginian-Hauterivian age is the peak time of Late Jurassic-Early Cretaceous magmatism activity in Chukotka, when amphibole-biotite subalkaline granodiorites and granites intruded. Biotite granites and leucogranites intruded in Barremian. At the same time effusions of trachybasalt-trachyandesite magmas took place, probably related to rifting [11]. Conclusions. On the basis of our U-Pb SHRIMP zircon data and published data on the Late Mesozoic granitoid magmatism ages in Chukotka we suppose three stages of granitoid activity: 1) Valaginian-Hauterivian, probably syn-collisional; 2) Aptian-Albian, related to post-collisional extention in granite-migmatite domes; 3) Late Cretaceous, slab-related Okhotsk-Chukotka volcanic belt activity. Work was supported by RBRR projects 10-05-00191, 11-05-00074, Scientific school # NSh-5177.2012.5, kontrakt № 04.740.11.0190. References: 1) Gel’man M.L. Chukotka fold system and adjacent regions // Geology of USSR. Vol. 3. Magmatism. P.556–567. (in Russian). 2) Gel’man M.L. Phanerozoic granite-metamorphic domes in the north-east of Siberia. Paper 1. Geological history of Paleozoic and Mesozoic domes // Pacific geology. 1995. Vol. 14. № 4. P. 102–115. (in Russian). 3) Gel’man M.L. Phanerozoic granite-metamorphic domes in the north-east of Russia. Paprer 2. Magmatism, metamorphism and migmatization in Late Mesozoic domes // Pacific geology. 1996. Vol. 15. № 1. P. 84–93. (in Russian). 4) Gel’man M.L. Interrelation in time of volcanism, different depth intrusions, metamorphism and mineralization // Gold mineralization and granitoid magmatism of North Pacific. Magadan: SVKNII DVO RAN, 2000. Vol. 2. P.5–79. (in Russian). 5) Milov A.P. Late Mesozoic granitoid formations of Central Chukotka. Novosibirs: SO RAN, 1975. Vol. 53. 134 p. (in Russian). 6) Belyy V.F. Formations and tectonics of Okhotsk-Chukotka volcanic belt. M.: Nauka, 1978. 213 p. (in Russian). 7) Firsov L.V. Timespan and age of culmination of Chukotka granitoid magmatism // Absolute dating of tectono-magmatic cycles and stages of mineralization according to 1964 year data. M.: Nauka, 1966. P. 368–379. (in Russian). 8) Sobolev A.P. Mesozoic granitoids of North-East USSR and problems of the ore content. M.: Nauka, 1989. 249 p. (in Russian). (in Russian). 9) Dudkinskiy D.V., Efremov S.V., Kozlov V.L. Geochemical features of Mesozoic granitoids of increased basicity of Chauna Bay (Chukotka) // Pacific geology. 1993. № 6. P.74-85. (in Russian). 10) Efremov S.V., Kozlov V.L., Sandimirova G.P. Rb/Sr age of granitoids of Central Chukotka, new point of view on the geological evolution of the region // Dokl. RAN. 2000. Vol.375. № 6. P. 816–819. (in Russian). 11) Zhulanova I.L., Rusakova T.B., Kotlyar I.N.. Geochronology and geochronometry of endogenic events in Mesozoic history of North-East Asia. M.: Nauka, 2007. 358 p. (in Russian). 12) Tikhomirov P.L. Petrology of granitoids of Telekayskiy ore region (Central Chukotka) PhD. Saint-Petersburg. 1998. 24 p. (in Russian). 13) Tikhomirov P.L., Kalinina E.A., Kobayashi K., Nakamura E. Late Mesozoic silisic magmatism of the North Chukotka area (NE Russia): age, source regions, and geodynamic implications // Lithos. 2008. Vol. 105. N 3-4. P. 329–346. 14) Tikhomirov P.L., Luchitskaya M.V., Shats A.L. Mid-Cretaceous magmatic event in Chukotka area (NE Russia) and its significance for regional tectonic reconstructions // ICAM-VI Abstracts. 2011. 15) Miller E.L., Katkov S.M., Strickland A., Toro J., Akinin V.V., Dumitru T.A. Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui-Chukotka fold belt, North East Arctic Russia. Stephan Mueller Spec. Publ. Ser. 2009. Vol. 4. P.157–175. 16) Gottlieb E.S, Miller E.L Cretaceous Arctic magmatism: slab related, plume related, of both? // ICAM-VI Abstracts. 2011. 17) Bondarenko G.E., Luchitskaya M.V. Mesozoic tectonic evolution of Alarmaut rise // Bull, MOIP. Geol. Ser. 2003. Vol. 78. N. 3. P. 25–38. (in Russian). 18) Katkov S.M., Strickland A., Miller E.L. On the age of granite intrusions of Anuyi-Chikotka fold system // Dokl. RAN. 2007. Vol. 414. № 4. P.515–518. (in Russian). 19) Luchitskaya M. V., Sokolov S. D., Bondarenko G. E., Katkov S. M. Composition and Geodynamic Setting of Granitoid Magmatism in the Alyarmaut Uplift, Western Chukchi Peninsula // Geochemistry International, 2010, Vol. 48, No. 9, P. 891–916. 20) Bering Strait Geologic Field Party, Koolen metamorphic complex, NE Russia: implications for the tectonic evolution of the Bering Strait region // Tectonics. 1997. Vol. 16, no. 5, p. 713-729. 21) Amato J.M., Miller E.L., Calvert A.T., Toro J,.Wright J.E. Potassic magmatism on St.Lawrence Island, Alaska, and Cape Dezhnev, Northeast Russia: evidence for Early Cretaceous subduction in the Bering Strait region // Short Notes of Alaska Geology. 2003. P.1–20. 22) Akinin V.V. New geochronological data on pre-Mesozoic rocks (Neoproterozoic to Devonaian) of Arctic Chukotka // ICAM-VI Abstracts. 2011.