dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Aerosol- and updraft-sensitive regimes of convective mixed-phase cloud formation: case studies and process analysis
VerfasserIn D. Chang, H. Su, P. Reutter, J. Trentmann, M. Andreae, U. Pöschl
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250060107
 
Zusammenfassung
Clouds have great influence on the vertical redistribution of energy and moisture, and consequently have impacts on weather and climate change from regional to global scales. Biomass burning is an important factor that could affect deep convection in clouds, and within this work, we used the ATHAM (Active Tracer High Resolution Atmospheric Model) model to study the properties of pyro-convective clouds and precipitation in 2- and 3-dimensional simulations. The two-moment microphysical scheme of Seifert (2002), including the hydrometeor categories cloud water, rain water, cloud ice, snow, graupel and hail, was utilized to investigate the interaction between atmospheric aerosols and cloud microphysics. The Chisholm fire that occurred in Alberta, Canada, in May 2001 was used as a base case. By assuming typical aerosol concentration conditions, we calculated the cloud droplet number concentrations under different fire intensity conditions and evaluated the effects of aerosol concentration and fire intensity on the formation of precipitation. The simulation results showed different control regimes for cloud and precipitation formation, including an aerosol-limited regime, a fire intensity-limited regime and a transitional regime, which are consistent with the results from a recent parcel model study (Reutter et al 2009).