dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Relationship between MODIS fire counts and GOME-2 tropospheric NO2 measurements
VerfasserIn S. F. Schreier, A. Richter, A. Schönhardt, J. P. Burrows
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250059706
 
Zusammenfassung
Biomass burning has an ongoing role in determining the composition of Earth’s surface and atmosphere. The term biomass burning comprises prescribed and wild fires (vegetation fires), as well as biofuel use, such as wood or peat for heating and cooking. Biomass burning represents an important source of aerosol particles and greenhouse gases such as CO2, CH4 and N2O, but also chemically active gases such as CO and NO2 are observed in the plumes. Even though vegetation fire emission inventories have improved considerably in recent years, large uncertainties remain in the temporally and spatially highly variable biomass burning emissions, especially due to uncertainties in input parameters. While satellite observed CO emissions from biomass burning have been investigated in great detail in the last years, NO2 has received much less attention. This can be explained by difficulties posed by the short atmospheric lifetime of NO2 and its photochemical equilibrium with NO but also the complicated retrieval of NO2 due to the presence of smoke and aerosols in the biomass burning plumes. Here, we present the relationship between observed fire counts and NO2 tropospheric vertical column densities from MODIS and GOME-2 measurements, respectively. The MOZART model for 1997 was used to determine monthly averaged air-mass factors and cloud fraction was derived by the FRESCO algorithm from SCIAMACHY measurements. The results show good correlation values (> 0.7) in many parts of the world, especially in the Subtropics. Future work will be further improvement of the retrieval for specific biomass burning situations in order to estimate total emissions from biomass burning for representative biomass burning regions by the use of appropriate models.