dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Predicting global thunderstorm activity for sprite observations from the International Space Station
VerfasserIn Y. Yair, K. Mezuman, B. Ziv, M. Priente, M. Glickman, Y. Takahashi, T. Inoue
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250059343
 
Zusammenfassung
The global rate of sprites occurring above thunderstorms, estimated from the ISUAL satellite data, is ~0.5 per minute (Chen et al., 2008). During the summer 2011, in the framework of the "Cosmic Shore" project, we conducted a concentrated attempt to image sprites from the ISS. The methodology for target selection was based on that developed for the space shuttle MEIDEX sprite campaign (Ziv et al., 2004). There are several types of convective systems generating thunderstorms which differ in their effectiveness for sprite production (Lyons et al., 2009), and so we had to evaluate the ability of the predicted storms to produce sprites. We used the Aviation Weather Center (http://aviationweather.gov) daily significant weather forecast maps (SIGWX) to select regions with high probability for convective storms and lightning such that they were within the camera filed-of-view as deduced from the ISS trajectory and distance to the limb. In order to enhance the chance for success, only storms with predicted "Frequent Cb" and cloud tops above 45 Kft (~14 km) were selected. Additionally, we targeted tropical storms and hurricanes over the oceans. The accuracy of the forecast method enabled obtaining the first-ever color images of sprites from space. We will report the observations showing various types of sprites in many different geographical locations, and correlated parent lightning properties derived from ELF and global and local lightning location networks. Chen, A. B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113,A08306, doi:10.1029/2008JA013101 Lyons, W. A., et al. (2009), The meteorological and electrical structure of TLE-producing convective storms. In: Betz et al. (eds.): Lighting: principles instruments and applications, Springer-Science + Business Media B.V.. Ziv, B., Y. Yair, K. Pressman and M. Fullekrug, (2004), Verification of the Aviation Center global forecasts of Mesoscale Convective Systems. Jour. App. Meteor., 43, 720-726.