dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Temperature Dependence of the Rate Constant and Product Studies for BrO with CH3O2 using a Turbulent Flow Tube coupled to Chemical Ionisation Mass Spectrometry
VerfasserIn K. Leather, A. Bacak, D Shallcross, C. Percival
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250058871
 
Zusammenfassung
The importance of halogen chemistry in the atmosphere and its contribution to ozone depletion is widely recognised (Farman et al. 1985; Lary and Toumi, 1997). Bromine plays a major role in catalytic cycles leading to the destruction of ozone (Salawitch, 2009; Yang, 2005) not only in the stratosphere (Anderson et al., 1991) but also parts of the troposphere, in particular the marine boundary layer (Saiz-Lopez et al., (2006) as exemplified by the catalytic cycle below. Br + O 3 -†’ BrO + O2(1) BrO + CH3O2 -†’ HOBr + CH2O2(2) HOBr + hv -†’ Br + OH (3) OH + CH4 -†’ CH3 + H2O (4) CH3 + O2 -†’ CH3O2(5) Net: CH4 + O3 -†’ CH2O2 + H2O (6) Satellite measurements of BrO have been taken in northern and southern hemispheres (Simpson et al., 2007 and references therein). Gas-phase kinetic data exist for reaction of XO (BrO, ClO, IO) with O3, NOx and HOxthough there are limited data concerning the reaction of XO with CH3O2. In order to improve modelling of halogen related chemical processes leading to ozone depletion, the determination of reaction rates and product branching ratios is essential. Since the fates of BrO are not yet fully understood, a turbulent flow chemical ionisation mass spectrometer (CIMS) shall be employed to study the kinetics and product yields of the BrO + CH3O2 pathway. Experiments will be conducted for reaction (2) under pseudo first order conditions using very low radical concentrations, typically (0.5 – 20) × 1010 molecule cm-3. Rate determinations will be retrieved as a function of atmospherically relevant temperatures (T = 180 – 300 K). References Anderson, J. G., Toohey, D. W., and Brune, W. H.: Free-Radicals within the Antarctic Vortex - the Role of Cfcs in Antarctic Ozone Loss, Science, 251, 39-46, 1991. Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large Losses of Total Ozone in Antarctica Reveal Seasonal Clox/Nox Interaction, Nature, 315, 207-210, 1985. Lary, D. J., and Toumi, R.: Halogen-catalyzed methane oxidation, Journal of Geophysical Research-Atmospheres, 102, 23421-23428, 1997. Saiz-Lopez, A., Shillito, J. A., Coe, H., and Plane, J. M. C.: Measurements and modelling of I-2, IO, OIO, BrO and NO3 in the mid-latitude marine boundary layer, Atmos. Chem. Phys., 6, 1513-1528, 2006. Salawitch, R. J.: Atmospheric chemistry - Biogenic bromine, Nature, 439, 275-277, 2006. Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Friess, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H. W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375-4418, 2007. Yang, X., Cox, R. A., Warwick, N. J., Pyle, J. A., Carver, G. D., O’Connor, F. M., and Savage, N. H.: Tropospheric bromine chemistry and its impacts on ozone: A model study, Journal of Geophysical Research-Atmospheres, 110, 18, D23311 10.1029/2005jd006244, 2005.