dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Hyperspectral at-sensor radiance for aerosol and surface reflectance retrievals
VerfasserIn Cristiana Bassani, Rosa Maria Cavalli, Sergio Ugo de Ceglie, Maria Lo Moro
Konferenz EGU General Assembly 2011
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 13 (2011)
Datensatznummer 250053340
 
Zusammenfassung
The retrieval process of aerosol properties and surface reflectance from space data based on simulation of the outgoing reflected and scattered radiation in the Earth-Atmosphere system, are widely used [Kaufman et al., 1997; Vermote et al., 1997; Kotchenova et al., 2008; Kokhanovsky et al. 2010]. Concerning hyperspectral data, minimization algorithms solve the inverse problem retrieving the aerosol optical thickness [Guanter et al., 2007; Gao et al., 2009; Bassani et al., 2010] for a given aerosol model. The a priori assumption of the aerosol model could provide inaccurate simulation of the atmospheric radiative field which also relies on phase function of the aerosol. Furthermore, the physically-based atmospheric correction of the hyperspectral remote sensing data provides the surface reflectance starting from the at-sensor radiance [Guanter et al., 2007; Gao et al., 2009; Kotchenova et al. 2009; Bassani et al., 2010]. The data processing requirements are the knowledge of the atmospheric state during the data acquisition. The forward problem solution could be unrealistic surface reflectance if the atmospheric parameters are not available and a priori assumed. This work presents synthetic at-sensor radiance generated for contiguous channels of a sensor with high spectral resolution inside the atmospheric window of the visible and near short-wave infrared spectral domain, that are hyperspectral data. The sensitive analysis of the synthetic optical spaceborne and airborne measurements is performed with respect to the aerosol properties, namely the urban and continental aerosol model and the increasing of the aerosol optical thickness at 550 nm. The signal is generated for nadir viewing angle over three different surface with bright, vegetated and water reflectance. The approach is based on the equation presented in [Vermote et al., 1997] assuming negligible the anisotropy of the considered surface reflectance (lambertian surface). The straightforward application of this equation uses the last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Vermote et al., 1997]. The 6S is an open-source code with a reasonable computational time and with an increasing of the accuracy of the radiative field simulation in the Earth-Atmosphere system with respect to the previous version of the code [Kotchenova et al., 2008]. Consequently, a significant improvement of the remote sensing results is derived [Vermote et al., 2009]. The results show that both the aerosol properties, optical thickness and model, are required to improve the accuracy of the results for retrieval process when hyperspectral data are available. From the synthetic data, an increasing of the aerosol optical thickness highlights the coupled retrieval of the properties, optical thickness and model, of the aerosol. The hyperspectral data show the spectral behavior of the at-sensor radiance along the entire spectral domain under different atmospheric conditions, as was the case for viewing the three surface reflectance with urban model and high aerosol loading. As a conclusion, this study reveals the potential of spaceborne hyperspectral data to provide more and better spectral information useful for optical atmospheric study. Currently, the imaging spectroscopy is a challenging task and new hyperspectral mission are intended to fill the gap of availability of hyperpsectral data. Bibliography Kaufman, Y. J., Tanrè, D., Gordon H. R., Nakajima T., Lenoble J., Frouin R., Grassl H., Herman B.M., King M., and Teillet P.M.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102(D14), 17051–17067, 1997. Vermote, E.F.; Tanrè , D.; Deuzè́ , J.L.; Herman M.; Morcrette J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675-686. Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Optics 2008, 47, 2215-2226. Kokhanovsky A.A., Deuzè J.L., Diner D.J., Dubovik O., Ducos F., Emde C., Garay M.J., Grainger R.G., Heckel A., Herman M., Katsev I.L., Keller J., Levy R., North P.R.J., Prikhach A.S., Rozanov V.V., Sayer A.M., Ota Y., Tanrè D., Thomas G.E., Zege E.P. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech., 3, 909–932, 2010. Guanter, L.; Estellès, V.; Moreno, J. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sens. Environ. 2007, 109, 54-65. Gao, B.-C.; Montes, M.J.; Davis, C.O.; Goetz, A.F.H. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 2009, 113, S17-S24. Bassani C.; Cavalli, R.M.; Pignatti S. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sens. 2010, 10, 6421-6438. Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2009, 113, D23. Vermote , E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2009, 113, D23.