dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Nitrogen availability links soil nitrous oxide and nitric oxide fluxes with forest productivity of a tropical montane forest in southern Ecuador
VerfasserIn Edzo Veldkamp, Katrin Wolf
Konferenz EGU General Assembly 2011
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 13 (2011)
Datensatznummer 250052960
 
Zusammenfassung
Tropical forests are important sources of the greenhouse gas nitrous oxide (N2O) and of nitric oxide (NO), a precursor of ozone. In tropical montane forests nitrogen limitation is common which affects both soil N2O and NO fluxes and forest productivity. Here we present evidence that forest productivity and N-oxide (N2O+NO) fluxes are linked through N availability across elevation and topographic gradients in tropical montane forests. We measured N-oxide fluxes, several indices of N availability, and forest productivity along an elevation gradient from 1000 m to 3000 m and across topographic gradients. Organic layer thickness of the soils increased and N availability decreased with increasing elevation and along the topographic gradient from the lower slope position to the ridges. Annual N2O fluxes ranged from -0.53 µg(N)m-2h-1 to 14.54 µg(N)m-2h-1 while NO fluxes ranged from -0.02 µg(N)m-2h-1 to 1.13 µg(N)m-2h-1. Both N-oxide fluxes and forest productivity increased with increasing N availability and showed close positive correlations with indices of N availability (C/N ratio and 15N signature of litterfall). We interpret the close correlations of N-oxide fluxes with total litterfall and tree basal area increment as evidence that N availability links N-oxide fluxes and forest productivity. This opens the possibility to include forest productivity as co-variable in predictions of N-oxide fluxes in nitrogen limited tropical montane forests. Especially increment of tree basal area was a promising proxy to predict soil N-oxide fluxes in these N limited ecosystems, possibly because it better reflects long-term forest productivity than total litterfall.