dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Generalized Cantor sets and seismicity in natural time
VerfasserIn N. V. Sarlis, E. S. Skordas, M. S. Lazaridou, P. A. Varotsos
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250044698
 
Zusammenfassung
It has been demonstrated that[1] natural time χ [2,3] has the capability to distinguish the two origins of self-similarity, i.e., the process memory and the process increments infinite variance. Seismicity is an example[1] that exhibits both these origins. Moreover, the variance κ1(-‰¡ -Ÿ¨Ï‡2-Ÿ©- -Ÿ¨Ï‡-Ÿ©2) of natural time has been proposed[4] as an order parameter for seismicity. The scaled distributions of κ1 of the worldwide seismicity as well as that of San Andreas fault system and Japan fall on the same (universal) curve, which exhibits, over almost five orders of magnitude, features similar[4] to those in other non-equilibrium critical systems (e.g., three dimensional turbulent flow). The effect of the process increments infinite variance in seismicity can be visualized by employing generalized Cantor sets (multiplicative cascades) in natural time: the most probable value of the variance κ1 is explicitly related with the parameter bof the Gutenberg-Richter law for randomly shuffled earthquake data[5]. In addition, the presence of temporal and magnitude correlations in the original earthquake data can also be identified using natural time[5]. The magnitude correlations are larger for closer in time earthquakes, if the maximum inter-occurrence time varies from half a day to 1 min. This result, since may be due to aftershock sequences that are always present in earthquake catalogues, may be useful for aftershock hazard assessment. REFERENCES [1] P.A. Varotsos, N.V. Sarlis, E.S. Skordas, H.K. Tanaka, and M.S. Lazaridou, Phys. Rev. E 74, 021123 (2006). [2] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, Practica of Athens Academy 76, 294 (2001). [3] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, Phys. Rev. E 66, 011902 (2002). [4] P. A. Varotsos, N. V. Sarlis, H. K. Tanaka, and E. S. Skordas, Phys. Rev. E 72, 041103 (2005). [5] N. V. Sarlis, E. S. Skordas, and P. A. Varotsos, Phys. Rev. E 80, 022102 (2009).