dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A System for Distributing Real-Time Customized (NEXRAD-Radar) Geosciences Data
VerfasserIn Satpreet Singh, Jeff McWhirter, Witold Krajewski, Anton Kruger, Radoslaw Goska, Bongchul Seo, Piotr Domaszczynski, Jeff Weber
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250042911
 
Zusammenfassung
Hydrometeorologists and hydrologists can benefit from (weather) radar derived rain products, including rain rates and accumulations. The Hydro-NEXRAD system (HNX1) has been in operation since 2006 at IIHR-Hydroscience and Engineering at The University of Iowa. It provides rapid and user-friendly access to such user-customized products, generated using archived Weather Surveillance Doppler Radar (WSR-88D) data from the NEXRAD weather radar network in the United States. HNX1 allows researchers to deal directly with radar-derived rain products, without the burden of the details of radar data collection, quality control, processing, and format conversion. A number of hydrologic applications can benefit from a continuous real-time feed of customized radar-derived rain products. We are currently developing such a system, Hydro-NEXRAD 2 (HNX2). HNX2 collects real-time, unprocessed data from multiple NEXRAD radars as they become available, processes them through a user-configurable pipeline of data-processing modules, and then publishes processed products at regular intervals. Modules in the data processing pipeline encapsulate algorithms such as non-meteorological echo detection, range correction, radar-reflectivity-rain rate (Z-R) conversion, advection correction, merging products from multiple radars, and grid transformations. HNX2’s implementation presents significant challenges, including quality-control, error-handling, time-synchronization of data from multiple asynchronous sources, generation of multiple-radar metadata products, distribution of products to a user base with diverse needs and constraints, and scalability. For content management and distribution, HNX2 uses RAMADDA (Repository for Archiving, Managing and Accessing Diverse Data), developed by the UCAR/Unidata Program Center in the Unites States. RAMADDA allows HNX2 to publish products through automation and gives users multiple access methods to the published products, including simple web-browser based access, and OpenDAP access. The latter allows a user to set up automation at his/her end, and fetch new data from HNX2 at regular intervals. HNX2 uses a two-dimensional metadata structure called a mosaic for managing metadata of the rain products. Currently, HNX2 is in pre-production state and is serving near real-time rain-rate map data-products for individual radars and merged data-products from seven radars covering the state of Iowa in the United States. These products then drive a rainfall-runoff model called CUENCAS, which is used as part of the Iowa Flood Center (housed at The University of Iowa) real-time flood forecasting system. We are currently developing a generalized scalable framework that will run on inexpensive hardware and will provide products for basins anywhere in the continental United States.