dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modelling carbon cycle in boreal wetlands with the Earth System Model ECHAM6/MPIOM
VerfasserIn Robert J. Getzieh, Victor Brovkin, Thomas Kleinen, Maarit Raivonen, Sanna Sevanto
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250041410
 
Zusammenfassung
     Wetlands of the northern high latitudes provide excellent conditions for peat accumulation and methanogenesis. High moisture and low O2 content in the soils lead to effective preservation of soil organic matter and methane emissions. Boreal Wetlands contain about 450 PgC and currently constitute a significant natural source of methane (CH4) even though they cover only 3% of the global land surface.      While storing carbon and removing CO2 from the atmosphere, boreal wetlands have contributed to global cooling on millennial timescales. Undisturbed boreal wetlands are likely to continue functioning as a net carbon sink. On the other hand these carbon pools might be destabilised in future since they are sensitive to climate change. Given that processes of peat accumulation and decay are closely dependent on hydrology and temperature, this balance may be altered significantly in the future. As a result, northern wetlands could have a large impact on carbon cycle-climate feedback mechanisms and therefore play an important role in global carbon cycle dynamics. However global biogeochemistry models used for simulations of CO2 dynamics in past and future climates usually neglect carbon cycle in wetlands.      We investigate the potential for positive or negative feedbacks to the climate system through fluxes of greenhouse gases (CO2 and CH4) with the general circulation model ECHAM6/MPIOM. A generic model of peat accumulation and decay has been developed and implemented into the land surface module JSBACH. We consider anaerobic biogeochemical processes which lead to formation of thick organic soils. Furthermore we consider specific wetland plant functional types (PFTs) in our model such as vascular plants (sedges) which impact methane transport and oxidation processes and non vascular plants (sphagnum mosses) which are promoting peat growth.      As prototypes we use the modelling approaches by Frolking et al. (2001) as well as Walter & Heimann (2001) for the peat dynamics, and the wetland model by Wania (2008) for vegetation cover and methane emissions. An initial distribution of wetlands follows the GLWD-3 map by Lehner and Döll (2004). A dynamical wetlands hydrology scheme (T. Stacke) and a methane transport and emission model (M. Raivonen) are at the moment also under development at the MPI for Meteorology respectively in close cooperation with the University of Helsinki. First results of our modelling approach will be presented. REFERENCES S. Frolking et al., Ecosystems 4, 479-498 (2001). B. Lehner et al., Journal of Hydrology 296, 1-22 (2004). B. P. Walter et al., J. Geophys. Res. 106, D24, 34189-34206 and 34207-34219 (2001). R. Wania et al., Global Biogeochem. Cycles 23, GB3014 and GB3015 (2009).