dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Climatic aspects of the variability of extreme storm occurrence and intensity in the western Black Sea
VerfasserIn Nikolay Valchev, Ekaterina Trifonova, Nataliya Andreeva, Petya Eftimova
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250040833
 
Zusammenfassung
The study considers potential changes in the storm occurrence and intensity over the western Black Sea through analysis of long term series of wind and wave conditions simulated with relatively high resolution. It is a result of coupling of atmospheric and wave models and spans period of more than 62 years (1948-2009). The wave hincast is driven with the global reanalysis data produced by ECMWF and NCEP/NCAR. The continuous dataset is reduced to a series of storms of considerable intensity and/or destructive potential through application of thresholds for filtration of weak seas. They are primarily based on storm impact on the coastal environment and principles for statistical representativeness. The climatic variability of occurrence and intensity of the selected extreme events is analyzed using different criteria such as number of stormy days, wind speed and wave height extremes. Particular consideration is paid to the mean wave energy per storm season and specific storm energy that are found to be more indicative for understanding of the storm pattern variability. Despite of the overall tendency for storminess decrease, there are no incontestable evidences corroborating a marked reduction of the storm intensity. While the total number of stormy hours diminishes, an increase of the mean wave energy is discernible. This is found to be caused by a change of the storm pattern: storms with short growth stage, energetic stage of full development and fast decay are more frequently observed. This storm type still provides significant energy input in the coastal zone and is able of producing considerable morphological impact, including damages. Such storms develop abruptly, therefore, timely prediction and mitigation of hazard effects become more complex to tackle with. Hence, little potential seems to exist for reducing the vulnerability to storms in the western Black Sea. That means the societies must begin to take such far-reaching implications into serious consideration during its strategic development and disaster avoidance planning processes.