dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity
VerfasserIn Anthony Konstantaras, Emmanouil Katsifarakis, Xristos Artzouxaltzis, John Makris, Filippos Vallianatos, Martin Varley
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250040531
 
Zusammenfassung
This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter’s scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc’, IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and Ben-Zion Y.: ‘Techniques and parameters to analyze seismicity patterns associated with large earthquakes’, Geophysics Res., vol. 102, pp. 17785-17795, 1997a [3] Habermann R. E.: ‘Precursory seismic quiescence: past, present and future’, Pure Applied Geophysics, vol. 126, pp. 279-318, 1988 [4] Matthews M. V. and Reasenberg P. A.: ‘Statistical methods for investigating quiescence and other temporal seismicity patterns’, Pure Applied Geophysics, vol. 126, pp. 357-372, 1988 [5] Zubkov S. I.: ‘The appearance times of earthquake precursors’, Izv. Akad. Nauk SSSR Fiz. Zemli (Solid Earth), No. 5, pp. 87-91, 1987 [6] Dobrovolsky I. P., Zubkov S. I. and Miachkin V. I.: ‘Estimation of the size of earthquake preparation zones’, Pageoph, vol. 117, pp. 1025-1044, 1979 [7] Dobrovolsky I. P., Gershenzon N. I. And Gokhberg M. B.: ‘Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake’, Physics of the Earth and Planetary Interiors, vol. 57, pp. 144-156, 1989 [8] Richter C. F.: ‘Elementary Seismology’, W.H.Freeman and Co., San Francisco, 1958 [9] Choy G. L. and Boatwright J. L.: ‘Global patterns of radiated seismic energy and apparent stress’, Journal of Geophysical Research, vol. 84 (B5), pp. 2348-2350, 1995 [10] Haykin S.: ‘Neural Networks’, 2nd Edition, Prentice Hall, 1999 [11] Jang J., Sun T. and Mizutany E.: ‘Neuro-fuzzy and soft computing’, Prentice Hall, Upper Saddle River, NJ, 1997 [12] Konstantaras A., Varley M.R., Vallianatos F., Collins G. and Holifield P.: ‘Detection of weak seismo-electric signals upon the recordings of the electrotelluric field by means of neuron-fuzzy technology’, IEEE Geoscience and Remote Sensing Letters, vol. 4 (1), 2007 [13] Konstantaras A., Varley M.R., Vallianatos F., Collins G. and Holifield P.: ‘Neuro-fuzzy prediction-based adaptive filtering applied to severely distorted magnetic field recordings’, IEEE Geoscience and Remote Sensing Letters, vol. 3 (4), 2006 [14] Maravelakis E., Bilalis N., Keith J. and Antoniadis A.: ‘Measuring and Benchmarking the Innovativeness of SME’s: a three dimensional Fuzzy Logic Approach’, Production Planning and Control Journal, vol. 17 (3), pp. 283-292, 2006 [15] Bodri B.: ‘A neural-network model for earthquake occurrence’, Geodynamics, vol. 32, pp. 289-310, 2001 [16] Skounakis E., Karagiannis V. and Vlissidis A.: ‘A Versatile System for Real-time Analyzing and Testing Objects Quality’, Proceedings-CD of the 4th International Conference on “New Horizons in Industry, Business and Education” (NHIBE 2005), Corfu, Greece, pp. 701-708, 2005