dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Analyzing carbon losses from dry soils after precipitation pulses by stable carbon isotopes
VerfasserIn Stephan Unger, Cristina Máguas, João Santos-Pereira, Christiane Werner
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250040289
 
Zusammenfassung
Rain events after drought periods strongly increase soil respiration (Birch effect) and affect plant activity, and thus, may influence the isotopic signal of ecosystem respiration. These CO2-pulses may largely affect the C-balance of arid and semi-arid systems. Here, we evaluate the origins of the Birch effect in a Mediterranean forest and its influence on the isotopic signal of ecosystem (δ13CR) and soil respiration (δ13CSoil). We conducted artificial rain pulses in May and August 2005 and estimated δ13CSoil on intact vegetation, bare and root-free soil in response to watering. After watering in May δ13CSoil showed strong enrichment (-18) and a rapid return to initial values (-27). This transient enrichment was smaller in August than in May (ca. -22). Further, we compared δ13CR and δ13CSoil after first natural rains in October 2005, where both revealed a good relationship over the diurnal and the fortnight cycle. We hypothesize that the “Birch effect” immediately after irrigation is the result of a hypo-osmotic stress response of the soil microbial community: during sudden moisture changes enriched osmoregulants are rapidly released and mineralized by the soil microbes to avoid cell lysis. After the pulse soil respiration followed a common moisture response. The overall impact of the Birch effect on C-sequestration will depend on both timing and frequency of the rains and thus, on whether the respired CO2 source is microbial or soil organic matter carbon.