dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A Comparison of Water Balance Components of a Spruce and a Beech Canopy Based on Parallel Micrometeorological and Plant Physiological Measurements
VerfasserIn Uwe Spank, Christian Bernhofer, Falko Clausnitzer, Babara Köstner, Kai Schwärzel, Karl-Heinz Feger
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250039822
 
Zusammenfassung
We present the investigations of water balances of two neighbouring canopies, a spruce and a beech canopy. The water balances were analyzed on small scale of areas less than 0.5 km2 during two growing seasons. The investigations are based on a combination of different meteorological (eddy-covariance measurements, EC) and plant physiological measurements (sap flow measurements, SF), as well as on the integration of measurements of soil moisture. The periods of investigation were very different concerning weather conditions. One of the seasons was hot and dry, the other season was cool and rainy. Thus, we are able to compare both canopies under different, however typical, prevailing weather. The first part of our study was the partitioning of gross precipitation P into components: interception I, canopy drip Pc and stem flow Ps. The main focus was to arrive at net precipitation Pn to quantify the plant available water Wa. Here, also the partitioning of Pc into throughfall Pt and canopy drainage Pd was analysed. In the second part we investigated the evapotranspiration ET as well as its partitioning into transpiration T, interception and soil evaporation Es. The third part addressed the combination of micrometeorological measuring methods and measurements of soil moisture Θ to close water balance and to estimate seepage R at canopy scale. In this context measuring errors have significant influences on the interpretation of results. However, they had been often ignored in former studies. Here, we try to give a robust approximation of measuring errors for the different methods. The analyses of partitioning of P showed that Pn and I were almost identical in both canopies. That means water input was almost identical in both canopies and was around two-thirds of P. This statement is confirmed especially against the background of unavoidable measuring errors. However, the partitioning of Pn was completely different for both canopies. Ps was 20 - 25% of P and around one-third of Pn at the beech site. Ps is negligible in the spruce canopy. The statistical analyses of Pc showed a Pt of 12 % at the spruce site and 14 % at the beech site, which correspond to expectations, derived from measured sky view coefficients. In this context the important regulating role of Pt for silvicultural, ecological and hydrological issues becomes clear. The analyses of ET, T and I as well as the integration of Θ to close of water balance were complex due to different scales of measurements. Which are different scales of EC measurements (used for ET) and SF measurements (used for T) as well as spatial heterogeneity of Θ. To overcome the scale problem in components of ET somewhat an inverse solution of Penman’s approach was used to separate T and I in the EC data. Here we found: differences in T between both canopies are caused predominately by different Wa in both canopies. However, influences due to differences of plant physiological characteristics between beeches and spruces were found to be less important. The potential water supply depends on two parameters: characteristics of soils and range of rooting zone. Therefore, soil characteristics determine water balance significantly under all climate conditions. However, the range of the rooting zone and the specifics of roots are only significant in droughts and dry periods, when water supply is restricted. Differences in interception between both canopies were found to be negligible during the growing season.