dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel So2 vertical profile on Venus
VerfasserIn Alen Duricic, Johannes Leitner, Maria G. Firneis
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250037685
 
Zusammenfassung
Introduction The distribution of SO2 below the clouds of Venus is an unsettled matter because various entry probes and earth observed values show big differences for the same altitude levels. A new analysis of the SO2 vertical profile with a “best of” data set [1] is compared to the Vega 1 and Vega 2 results. For the analysis of the SO2 vertical profile two models have been formulated. While one model considers the fast decrease of SO2 with descending altitude and starts with 0 ppmV at the surface, the other model starts with 25 ppmV, as indicated by Vega 1. Although there is a lack of information on the lowest 10 kms of the atmosphere, an analysis should be done to understand the geological evolution and a possible activity on Venus. Vertical Profiles The two models produce two different vertical profiles and with those it was possible to calculate the mass of SO2 in the whole lower atmosphere. It is important to note that SO2 nearly disappears at 69 km height [1,3] while 99,6% of the whole mass is still contained in the lower atmosphere. The difference in the results is based on the different surface values, which have been used. The first model stands in good agreement with the Vega mission data and the second model can be used as an upper limit of SO2 in the atmosphere. The results yield a good estimation of how much SO2 is existent and give new discussion points about volcanic activity on Venus and a possible still unknown SO2 destroying mechanism. References [1] Bertaux, J. et al. (1996) JGR, 101, 12709–12745. [2] de Bergh, C. et al. (2006) Planetary and Space Sci., 54, 1389-1397. [3] Esposito L.W. et al., (1997) Venus II : Geology, Geophysics, Atmosphere, and Solar Wind Environment. Edited by Stephen W. Bougher, D.M. Hunten, and R.J. Philips. Tucson, AZ : University of Arizona Press, 415-458