dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Using terrestrial laser scanning data to drive decimetric resolution urban inundation models
VerfasserIn Timothy Fewtrell, Alastair Duncan, Matthew Horritt, Paul Bates
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250036772
 
Zusammenfassung
The availability of LiDAR data has led to the proliferation a wide variety of research streams from DEM segmentation (Mason et al., 2007) to mapping the vertical profile of vegetation (Blair et al., 1999) and floodplain inundation modelling (Bates et al., 2003). As the specifications of LiDAR systems have improved, the vertical accuracy and spatial resolution of airborne systems have increased to ~5-10 cm and ~25 cm respectively (Baltsavias, 1999), giving highly resolved digital surface models (DSMs) of the urban environment (Mason et al., 2007). More recently, terrestrial laser scanners have started to be employed to capture even higher accuracy (i.e. ~1-3cm horizontal resolution) 3D point cloud data for applications in engineering, transportation, urban planning, among others (Lichti et al., 2008). Such very high resolution terrestrial laser scanning data have, however, yet to be used in urban hydraulic models, despite the fact that anecdotal and modelling evidence of the hydraulic process at work during urban floods suggests that features with very small horizontal and vertical length scales (i.e. walls, kerbs, steps, road cambers and storm drains) can have a significant impact on the flow development. In this paper we therefore investigate the potential utility of terrestrial laser scanning data for improving flood risk assessments in urban areas. To do this two key problems have to be dealt with. First, we require methods to process terrestrial laser scanning data in order to extract hydraulically relevant information. As such a number of processing steps are presented and a variety of resolution DEMs are derived. Second, we need to employ highly computationally efficient hydraulic algorithms in order to build models at the scale of the terrestrial laser scanner data and still simulate flows over spatial domains that are not trivially small. In this study, two state-of-the-art numerical models are used to demonstrate complex urban flood flows for pluvial and surface water flooding scenarios.